10 resultados para Nonlinear acoustics.

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and experimentally validate a first-principles based model for the nonlinear piezoelectric response of an electroelastic energy harvester. The analysis herein highlights the importance of modeling inherent piezoelectric nonlinearities that are not limited to higher order elastic effects but also include nonlinear coupling to a power harvesting circuit. Furthermore, a nonlinear damping mechanism is shown to accurately restrict the amplitude and bandwidth of the frequency response. The linear piezoelectric modeling framework widely accepted for theoretical investigations is demonstrated to be a weak presumption for near-resonant excitation amplitudes as low as 0.5 g in a prefabricated bimorph whose oscillation amplitudes remain geometrically linear for the full range of experimental tests performed (never exceeding 0.25% of the cantilever overhang length). Nonlinear coefficients are identified via a nonlinear least-squares optimization algorithm that utilizes an approximate analytic solution obtained by the method of harmonic balance. For lead zirconate titanate (PZT-5H), we obtained a fourth order elastic tensor component of c1111p =-3.6673× 1017 N/m2 and a fourth order electroelastic tensor value of e3111 =1.7212× 108 m/V. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Push-pull" chromophores based on extended pi-electron systems have been designed to exhibit exceptionally large molecular hyperpolarizabilities. We have engineered an amphiphilic four-helix bundle peptide to vectorially incorporate such hyperpolarizable chromophores having a metalloporphyrin moiety, with high specificity into the interior core of the bundle. The amphiphilic exterior of the bundle facilitates the formation of densely packed monolayer ensembles of the vectorially oriented peptide-chromophore complexes at the liquid-gas interface. Chemical specificity designed into the ends of the bundle facilitates the subsequent covalent attachment of these monolayer ensembles onto the surface of an inorganic substrate. In this article, we describe the structural characterization of these monolayer ensembles at each stage of their fabrication for one such peptide-chromophore complex designated as AP0-RuPZn. In the accompanying article, we describe the characterization of their macroscopic nonlinear optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generalized nonlinear susceptibility retrieval method for metamaterials based on transfer matrices and valid in the nondepleted pump approximation. We construct a general formalism to describe the transfer matrix method for nonlinear media and apply it to the processes of three- and four-wave mixing. The accuracy of this approach is verified via finite element simulations. The method is then reversed to give a set of equations for retrieving the nonlinear susceptibility. Finally, we apply the proposed retrieval operation to a three-wave mixing transmission experiment performed on a varactor loaded split ring resonator metamaterial sample and find quantitative agreement with an analytical effective medium theory model. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental demonstration of phase conjugation using nonlinear metamaterial elements. Active split-ring resonators loaded with varactor diodes are demonstrated theoretically to act as phase-conjugating or time-reversing discrete elements when parametrically pumped and illuminated with appropriate frequencies. The metamaterial elements were fabricated and shown experimentally to produce a time-reversed signal. Measurements confirm that a discrete array of phase-conjugating elements act as a negatively refracting time-reversal rf lens only 0.12λ thick.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time-domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The computed SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabricated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associated with metamaterials can accurately be transitioned to nonlinear systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forward stimulated Brillouin scattering (FSBS) is observed in a standard 2-km-long highly nonlinear fiber. The frequency of FSBS arising from multiple radially guided acoustic resonances is observed up to gigahertz frequencies. The tight confinement of the light and acoustic field enhances the interaction and results in a large gain coefficient of 34.7 W(-1) at a frequency of 933.8 MHz. We also find that the profile on the anti-Stokes side of the pump beam have lineshapes that are asymmetric, which we show is due to the interference between FSBS and the optical Kerr effect. The measured FSBS resonance linewidths are found to increase linearly with the acoustic frequency. Based on this scaling, we conclude that dominant contribution to the linewidth is from surface damping due to the fiber jacket and structural nonuniformities along the fiber.