5 resultados para Non-reversible stochastic dynamics

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear interaction between light and atoms is an extensive field of study with a broad range of applications in quantum information science and condensed matter physics. Nonlinear optical phenomena occurring in cold atoms are particularly interesting because such slowly moving atoms can spatially organize into density gratings, which allows for studies involving optical interactions with structured materials. In this thesis, I describe a novel nonlinear optical effect that arises when cold atoms spatially bunch in an optical lattice. I show that employing this spatial atomic bunching provides access to a unique physical regime with reduced thresholds for nonlinear optical processes and enhanced material properties. Using this method, I observe the nonlinear optical phenomenon of transverse optical pattern formation at record-low powers. These transverse optical patterns are generated by a wave- mixing process that is mediated by the cold atomic vapor. The optical patterns are highly multimode and induce rich non-equilibrium atomic dynamics. In particular, I find that there exists a synergistic interplay between the generated optical pat- terns and the atoms, wherein the scattered fields help the atoms to self-organize into new, multimode structures that are not externally imposed on the atomic sample. These self-organized structures in turn enhance the power in the optical patterns. I provide the first detailed investigation of the motional dynamics of atoms that have self-organized in a multimode geometry. I also show that the transverse optical patterns induce Sisyphus cooling in all three spatial dimensions, which is the first observation of spontaneous three-dimensional cooling. My experiment represents a unique means by which to study nonlinear optics and non-equilibrium dynamics at ultra-low required powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple lines of evidence reveal that activation of the tropomyosin related kinase B (TrkB) receptor is a critical molecular mechanism underlying status epilepticus (SE) induced epilepsy development. However, the cellular consequences of such signaling remain unknown. To this point, localization of SE-induced TrkB activation to CA1 apical dendritic spines provides an anatomic clue pointing to Schaffer collateral-CA1 synaptic plasticity as one potential cellular consequence of TrkB activation. Here, we combine two-photon glutamate uncaging with two photon fluorescence lifetime imaging microscopy (2pFLIM) of fluorescence resonance energy transfer (FRET)-based sensors to specifically investigate the roles of TrkB and its canonical ligand brain derived neurotrophic factor (BDNF) in dendritic spine structural plasticity (sLTP) of CA1 pyramidal neurons in cultured hippocampal slices of rodents. To begin, we demonstrate a critical role for post-synaptic TrkB and post-synaptic BDNF in sLTP. Building on these findings, we develop a novel FRET-based sensor for TrkB activation that can report both BDNF and non-BDNF activation in a specific and reversible manner. Using this sensor, we monitor the spatiotemporal dynamics of TrkB activity during single-spine sLTP. In response to glutamate uncaging, we report a rapid (onset less than 1 minute) and sustained (lasting at least 20 minutes) activation of TrkB in the stimulated spine that depends on N-methyl-D-aspartate receptor (NMDAR)-Ca2+/Calmodulin dependent kinase II (CaMKII) signaling as well as post-synaptically synthesized BDNF. Consistent with these findings, we also demonstrate rapid, glutamate uncaging-evoked, time-locked release of BDNF from single dendritic spines using BDNF fused to superecliptic pHluorin (SEP). Finally, to elucidate the molecular mechanisms by which TrkB activation leads to sLTP, we examined the dependence of Rho GTPase activity - known mediators of sLTP - on BDNF-TrkB signaling. Through the use of previously described FRET-based sensors, we find that the activities of ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) require BDNF-TrkB signaling. Taken together, these findings reveal a spine-autonomous, autocrine signaling mechanism involving NMDAR-CaMKII dependent BDNF release from stimulated dendritic spines leading to TrkB activation and subsequent activation of the downstream molecules Rac1 and Cdc42 in these same spines that proves critical for sLTP. In conclusion, these results highlight structural plasticity as one cellular consequence of CA1 dendritic spine TrkB activation that may potentially contribute to larger, circuit-level changes underlying SE-induced epilepsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation consists of three separate essays on job search and labor market dynamics. In the first essay, “The Impact of Labor Market Conditions on Job Creation: Evidence from Firm Level Data”, I study how much changes in labor market conditions reduce employment fluctuations over the business cycle. Changes in labor market conditions make hiring more expensive during expansions and cheaper during recessions, creating counter-cyclical incentives for job creation. I estimate firm level elasticities of labor demand with respect to changes in labor market conditions, considering two margins: changes in labor market tightness and changes in wages. Using employer-employee matched data from Brazil, I find that all firms are more sensitive to changes in wages rather than labor market tightness, and there is substantial heterogeneity in labor demand elasticity across regions. Based on these results, I demonstrate that changes in labor market conditions reduce the variance of employment growth over the business cycle by 20% in a median region, and this effect is equally driven by changes along each margin. Moreover, I show that the magnitude of the effect of labor market conditions on employment growth can be significantly affected by economic policy. In particular, I document that the rapid growth of the national minimum wages in Brazil in 1997-2010 amplified the impact of the change in labor market conditions during local expansions and diminished this impact during local recessions.

In the second essay, “A Framework for Estimating Persistence of Local Labor

Demand Shocks”, I propose a decomposition which allows me to study the persistence of local labor demand shocks. Persistence of labor demand shocks varies across industries, and the incidence of shocks in a region depends on the regional industrial composition. As a result, less diverse regions are more likely to experience deeper shocks, but not necessarily more long lasting shocks. Building on this idea, I propose a decomposition of local labor demand shocks into idiosyncratic location shocks and nationwide industry shocks and estimate the variance and the persistence of these shocks using the Quarterly Census of Employment and Wages (QCEW) in 1990-2013.

In the third essay, “Conditional Choice Probability Estimation of Continuous- Time Job Search Models”, co-authored with Peter Arcidiacono and Arnaud Maurel, we propose a novel, computationally feasible method of estimating non-stationary job search models. Non-stationary job search models arise in many applications, where policy change can be anticipated by the workers. The most prominent example of such policy is the expiration of unemployment benefits. However, estimating these models still poses a considerable computational challenge, because of the need to solve a differential equation numerically at each step of the optimization routine. We overcome this challenge by adopting conditional choice probability methods, widely used in dynamic discrete choice literature, to job search models and show how the hazard rate out of unemployment and the distribution of the accepted wages, which can be estimated in many datasets, can be used to infer the value of unemployment. We demonstrate how to apply our method by analyzing the effect of the unemployment benefit expiration on duration of unemployment using the data from the Survey of Income and Program Participation (SIPP) in 1996-2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rolling Isolation Systems provide a simple and effective means for protecting components from horizontal floor vibrations. In these systems a platform rolls on four steel balls which, in turn, rest within shallow bowls. The trajectories of the balls is uniquely determined by the horizontal and rotational velocity components of the rolling platform, and thus provides nonholonomic constraints. In general, the bowls are not parabolic, so the potential energy function of this system is not quadratic. This thesis presents the application of Gauss's Principle of Least Constraint to the modeling of rolling isolation platforms. The equations of motion are described in terms of a redundant set of constrained coordinates. Coordinate accelerations are uniquely determined at any point in time via Gauss's Principle by solving a linearly constrained quadratic minimization. In the absence of any modeled damping, the equations of motion conserve energy. This mathematical model is then used to find the bowl profile that minimizes response acceleration subject to displacement constraint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.

In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.

By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.