5 resultados para New oil regulatory mark

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemoprevention agents are an emerging new scientific area that holds out the promise of delaying or avoiding a number of common cancers. These new agents face significant scientific, regulatory, and economic barriers, however, which have limited investment in their research and development (R&D). These barriers include above-average clinical trial scales, lengthy time frames between discovery and Food and Drug Administration approval, liability risks (because they are given to healthy individuals), and a growing funding gap for early-stage candidates. The longer time frames and risks associated with chemoprevention also cause exclusivity time on core patents to be limited or subject to significant uncertainties. We conclude that chemoprevention uniquely challenges the structure of incentives embodied in the economic, regulatory, and patent policies for the biopharmaceutical industry. Many of these policy issues are illustrated by the recently Food and Drug Administration-approved preventive agents Gardasil and raloxifene. Our recommendations to increase R&D investment in chemoprevention agents include (a) increased data exclusivity times on new biological and chemical drugs to compensate for longer gestation periods and increasing R&D costs; chemoprevention is at the far end of the distribution in this regard; (b) policies such as early-stage research grants and clinical development tax credits targeted specifically to chemoprevention agents (these are policies that have been very successful in increasing R&D investment for orphan drugs); and (c) a no-fault liability insurance program like that currently in place for children's vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Review existing studies and provide new results on the development, regulatory, and market aspects of new oncology drug development. METHODS: We utilized data from the US Food and Drug Administration (FDA), company surveys, and publicly available commercial business intelligence databases on new oncology drugs approved in the United States and on investigational oncology drugs to estimate average development and regulatory approval times, clinical approval success rates, first-in-class status, and global market diffusion. RESULTS: We found that approved new oncology drugs to have a disproportionately high share of FDA priority review ratings, of orphan drug designations at approval, and of drugs that were granted inclusion in at least one of the FDA's expedited access programs. US regulatory approval times were shorter, on average, for oncology drugs (0.5 years), but US clinical development times were longer on average (1.5 years). Clinical approval success rates were similar for oncology and other drugs, but proportionately more of the oncology failures reached expensive late-stage clinical testing before being abandoned. In relation to other drugs, new oncology drug approvals were more often first-in-class and diffused more widely across important international markets. CONCLUSION: The market success of oncology drugs has induced a substantial amount of investment in oncology drug development in the last decade or so. However, given the great need for further progress, the extent to which efforts to develop new oncology drugs will grow depends on future public-sector investment in basic research, developments in translational medicine, and regulatory reforms that advance drug-development science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What is the relationship between the design of regulations and levels of individual compliance? To answer this question, Crawford and Ostrom's institutional grammar tool is used to deconstruct regulations governing the aquaculture industry in Colorado, USA. Compliance with the deconstructed regulatory components is then assessed based on the perceptions of the appropriateness of the regulations, involvement in designing the regulations, and intrinsic and extrinsic motivations. The findings suggest that levels of compliance with regulations vary across and within individuals regarding various aspects of the regulatory components. As expected, the level of compliance is affected by the perceived appropriateness of regulations, participation in designing the regulations, and feelings of guilt and fear of social disapproval. Furthermore, there is a strong degree of interdependence among the written components, as identified by the institutional grammar tool, in affecting compliance levels. The paper contributes to the regulation and compliance literature by illustrating the utility of the institutional grammar tool in understanding regulatory content, applying a new Q-Sort technique for measuring individual levels of compliance, and providing a rare exploration into feelings of guilt and fear outside of the laboratory setting. © 2012 Blackwell Publishing Asia Pty Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.