10 resultados para New career models
em Duke University
Resumo:
The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.
Resumo:
Scholarly publishing, and scholarly communication more generally, are based on patterns established over many decades and even centuries. Some of these patterns are clearly valuable and intimately related to core values of the academy, but others were based on the exigencies of the past, and new opportunities have brought into question whether it makes sense to persist in supporting old models. New technologies and new publishing models raise the question of how we should fund and operate scholarly publishing and scholarly communication in the future, moving away from a scarcity model based on the exchange of physical goods that restricts access to scholarly literature unless a market-based exchange takes place. This essay describes emerging models that attempt to shift scholarly communication to a more open-access and mission-based approach and that try to retain control of scholarship by academics and the institutions and scholarly societies that support them. It explores changing practices for funding scholarly journals and changing services provided by academic libraries, changes instituted with the end goal of providing more access to more readers, stimulating new scholarship, and removing inefficiencies from a system ready for change. © 2014 by the American Anthropological Association.
Resumo:
The problem of social diffusion has animated sociological thinking on topics ranging from the spread of an idea, an innovation or a disease, to the foundations of collective behavior and political polarization. While network diffusion has been a productive metaphor, the reality of diffusion processes is often muddier. Ideas and innovations diffuse differently from diseases, but, with a few exceptions, the diffusion of ideas and innovations has been modeled under the same assumptions as the diffusion of disease. In this dissertation, I develop two new diffusion models for "socially meaningful" contagions that address two of the most significant problems with current diffusion models: (1) that contagions can only spread along observed ties, and (2) that contagions do not change as they spread between people. I augment insights from these statistical and simulation models with an analysis of an empirical case of diffusion - the use of enterprise collaboration software in a large technology company. I focus the empirical study on when people abandon innovations, a crucial, and understudied aspect of the diffusion of innovations. Using timestamped posts, I analyze when people abandon software to a high degree of detail.
To address the first problem, I suggest a latent space diffusion model. Rather than treating ties as stable conduits for information, the latent space diffusion model treats ties as random draws from an underlying social space, and simulates diffusion over the social space. Theoretically, the social space model integrates both actor ties and attributes simultaneously in a single social plane, while incorporating schemas into diffusion processes gives an explicit form to the reciprocal influences that cognition and social environment have on each other. Practically, the latent space diffusion model produces statistically consistent diffusion estimates where using the network alone does not, and the diffusion with schemas model shows that introducing some cognitive processing into diffusion processes changes the rate and ultimate distribution of the spreading information. To address the second problem, I suggest a diffusion model with schemas. Rather than treating information as though it is spread without changes, the schema diffusion model allows people to modify information they receive to fit an underlying mental model of the information before they pass the information to others. Combining the latent space models with a schema notion for actors improves our models for social diffusion both theoretically and practically.
The empirical case study focuses on how the changing value of an innovation, introduced by the innovations' network externalities, influences when people abandon the innovation. In it, I find that people are least likely to abandon an innovation when other people in their neighborhood currently use the software as well. The effect is particularly pronounced for supervisors' current use and number of supervisory team members who currently use the software. This case study not only points to an important process in the diffusion of innovation, but also suggests a new approach -- computerized collaboration systems -- to collecting and analyzing data on organizational processes.
Resumo:
Empirical modeling of high-frequency currency market data reveals substantial evidence for nonnormality, stochastic volatility, and other nonlinearities. This paper investigates whether an equilibrium monetary model can account for nonlinearities in weekly data. The model incorporates time-nonseparable preferences and a transaction cost technology. Simulated sample paths are generated using Marcet's parameterized expectations procedure. The paper also develops a new method for estimation of structural economic models. The method forces the model to match (under a GMM criterion) the score function of a nonparametric estimate of the conditional density of observed data. The estimation uses weekly U.S.-German currency market data, 1975-90. © 1995.
Resumo:
This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based two-stage least squares estimator for this model, which can be used when some regressors are endogenous, mismeasured, or otherwise correlated with the errors. A simulation study indicates that the new estimators perform well in finite samples. Our limiting distribution theory includes a new asymptotic trimming result addressing the boundary bias in first-stage density estimation without knowledge of the support boundary. © 2007 Cambridge University Press.
Resumo:
Soft-tissue sarcomas (STSs) are rare mesenchymal tumors that arise from muscle, fat and connective tissue. Currently, over 75 subtypes of STS are recognized. The rarity and heterogeneity of patient samples complicate clinical investigations into sarcoma biology. Model organisms might provide traction to our understanding and treatment of the disease. Over the past 10 years, many successful animal models of STS have been developed, primarily genetically engineered mice and zebrafish. These models are useful for studying the relevant oncogenes, signaling pathways and other cell changes involved in generating STSs. Recently, these model systems have become preclinical platforms in which to evaluate new drugs and treatment regimens. Thus, animal models are useful surrogates for understanding STS disease susceptibility and pathogenesis as well as for testing potential therapeutic strategies.
Resumo:
Social and ecological factors are important in shaping sexual dimorphism in Anthropoidea, but there is also a tendency for body-size dimorphism and canine dimorphism to increase with increased body size (Rensch's rule) (Rensch: Evolution Above the Species Level. London: Methuen, 1959.) Most ecologist interpret Rensch's rule to be a consequence of social and ecological selective factors that covary with body size, but recent claims have been advanced that dimorphism is principally a consequence of selection for increased body size alone. Here we assess the effects of body size, body-size dimorphism, and social structure on canine dimorphism among platyrrhine monkeys. Platyrrhine species examined are classified into four behavioral groups reflecting the intensity of intermale competition for access to females or to limiting resources. As canine dimorphism increases, so does the level of intermale competition. Those species with monogamous and polyandrous social structures have the lowest canine dimorphism, while those with dominance rank hierarchies of males have the most canine dimorphism. Species with fission-fusion social structures and transitory intermale breeding-season competition fall between these extremes. Among platyrrhines there is a significant positive correlation between body size and canine dimorphism However, within levels of competition, no significant correlation was found between the two. Also, with increased body size, body-size dimorphism tends to increase, and this correlation holds in some cases within competition levels. In an analysis of covariance, once the level of intermale competition is controlled for, neither molar size nor molar-size dimorphism accounts for a significant part of the variance in canine dimorphism. A similar analysis using body weight as a measure of size and dimorphism yields a less clear-cut picture: body weight contributes significantly to the model when the effects of the other factors are controlled. Finally, in a model using head and body length as a measure of size and dimorphism, all factors and the interactions between them are significant. We conclude that intermale competition among platyrrhine species is the most important factor explaining variations in canine dimorphism. The significant effects of size and size dimorphism in some models may be evidence that natural (as opposed to sexual) selection also plays a role in the evolution of increased canine dimorphism.
Resumo:
Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.
Resumo:
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme essential for processing viral transcripts during rolling circle viral replication. The first crystal structure of the cleaved ribozyme was solved in 1998, followed by structures of uncleaved, mutant-inhibited and ion-complexed forms. Recently, methods have been developed that make the task of modeling RNA structure and dynamics significantly easier and more reliable. We have used ERRASER and PHENIX to rebuild and re-refine the cleaved and cis-acting C75U-inhibited structures of the HDV ribozyme. The results correct local conformations and identify alternates for RNA residues, many in functionally important regions, leading to improved R values and model validation statistics for both structures. We compare the rebuilt structures to a higher resolution, trans-acting deoxy-inhibited structure of the ribozyme, and conclude that although both inhibited structures are consistent with the currently accepted hammerhead-like mechanism of cleavage, they do not add direct structural evidence to the biochemical and modeling data. However, the rebuilt structures (PDBs: 4PR6, 4PRF) provide a more robust starting point for research on the dynamics and catalytic mechanism of the HDV ribozyme and demonstrate the power of new techniques to make significant improvements in RNA structures that impact biologically relevant conclusions.
Resumo:
BACKGROUND: Anticoagulation can reduce quality of life, and different models of anticoagulation management might have different impacts on satisfaction with this component of medical care. Yet, to our knowledge, there are no scales measuring quality of life and satisfaction with anticoagulation that can be generalized across different models of anticoagulation management. We describe the development and preliminary validation of such an instrument - the Duke Anticoagulation Satisfaction Scale (DASS). METHODS: The DASS is a 25-item scale addressing the (a) negative impacts of anticoagulation (limitations, hassles and burdens); and (b) positive impacts of anticoagulation (confidence, reassurance, satisfaction). Each item has 7 possible responses. The DASS was administered to 262 patients currently receiving oral anticoagulation. Scales measuring generic quality of life, satisfaction with medical care, and tendency to provide socially desirable responses were also administered. Statistical analysis included assessment of item variability, internal consistency (Cronbach's alpha), scale structure (factor analysis), and correlations between the DASS and demographic variables, clinical characteristics, and scores on the above scales. A follow-up study of 105 additional patients assessed test-retest reliability. RESULTS: 220 subjects answered all items. Ceiling and floor effects were modest, and 25 of the 27 proposed items grouped into 2 factors (positive impacts, negative impacts, this latter factor being potentially subdivided into limitations versus hassles and burdens). Each factor had a high degree of internal consistency (Cronbach's alpha 0.78-0.91). The limitations and hassles factors consistently correlated with the SF-36 scales measuring generic quality of life, while the positive psychological impact scale correlated with age and time on anticoagulation. The intra-class correlation coefficient for test-retest reliability was 0.80. CONCLUSIONS: The DASS has demonstrated reasonable psychometric properties to date. Further validation is ongoing. To the degree that dissatisfaction with anticoagulation leads to decreased adherence, poorer INR control, and poor clinical outcomes, the DASS has the potential to help identify reasons for dissatisfaction (and positive satisfaction), and thus help to develop interventions to break this cycle. As an instrument designed to be applicable across multiple models of anticoagulation management, the DASS could be crucial in the scientific comparison between those models of care.