6 resultados para Neuro-astroglial interaction model
em Duke University
Resumo:
The full-scale base-isolated structure studied in this dissertation is the only base-isolated building in South Island of New Zealand. It sustained hundreds of earthquake ground motions from September 2010 and well into 2012. Several large earthquake responses were recorded in December 2011 by NEES@UCLA and by GeoNet recording station nearby Christchurch Women's Hospital. The primary focus of this dissertation is to advance the state-of-the art of the methods to evaluate performance of seismic-isolated structures and the effects of soil-structure interaction by developing new data processing methodologies to overcome current limitations and by implementing advanced numerical modeling in OpenSees for direct analysis of soil-structure interaction.
This dissertation presents a novel method for recovering force-displacement relations within the isolators of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics, real modes, and equal floor masses, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. The recovered in-service force-displacement relations are then incorporated into the OpenSees soil structure interaction model.
Numerical simulations of soil-structure interaction involving non-uniform soil behavior are conducted following the development of the complete soil-structure interaction model of Christchurch Women's Hospital in OpenSees. In these 2D OpenSees models, the superstructure is modeled as two-dimensional frames in short span and long span respectively. The lead rubber bearings are modeled as elastomeric bearing (Bouc Wen) elements. The soil underlying the concrete raft foundation is modeled with linear elastic plane strain quadrilateral element. The non-uniformity of the soil profile is incorporated by extraction and interpolation of shear wave velocity profile from the Canterbury Geotechnical Database. The validity of the complete two-dimensional soil-structure interaction OpenSees model for the hospital is checked by comparing the results of peak floor responses and force-displacement relations within the isolation system achieved from OpenSees simulations to the recorded measurements. General explanations and implications, supported by displacement drifts, floor acceleration and displacement responses, force-displacement relations are described to address the effects of soil-structure interaction.
Resumo:
Today, the trend towards decentralization is far-reaching. Proponents of decentralization have argued that decentralization promotes responsive and accountable local government by shortening the distance between local representatives and their constituency. However, in this paper, I focus on the countervailing effect of decentralization on the accountability mechanism, arguing that decentralization, which increases the number of actors eligible for policy making and implementation in governance as a whole, may blur lines of responsibility, thus weakening citizens’ ability to sanction government in election. By using the ordinary least squares (OLS) interaction model based on historical panel data for 78 countries in the 2002 – 2010 period, I test the hypothesis that as the number of government tiers increases, there will be a negative interaction between the number of government tiers and decentralization policies. The regression results show empirical evidence that decentralization policies, having a positive impact on governance under a relatively simple form of multilevel governance, have no more statistically significant effects as the complexity of government structure exceeds a certain degree. In particular, this paper found that the presence of intergovernmental meeting with legally binding authority have a negative impact on governance when the complexity of government structure reaches to the highest level.
Resumo:
Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as
`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol
particles and greenhouse gases (GHGs) as responses to their surrounding environments.
While the signicance of quantifying the exchange rates of GHGs and atmospheric
aerosol particles between the terrestrial biosphere and the atmosphere is
hardly questioned in many scientic elds, the progress in improving model predictability,
data interpretation or the combination of the two remains impeded by
the lack of precise framework elucidating their dynamic transport processes over a
wide range of spatiotemporal scales. The diculty in developing prognostic modeling
tools to quantify the source or sink strength of these atmospheric substances
can be further magnied by the fact that the climate system is also sensitive to the
feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,
the emergent need is to reduce uncertainties when assessing this complex and dynamic
feedback cycle that is necessary to support the decisions of mitigation and
adaptation policies associated with human activities (e.g., anthropogenic emission
controls and land use managements) under current and future climate regimes.
With the goal to improve the predictions for the biosphere-atmosphere exchange
of biologically active gases and atmospheric aerosol particles, the main focus of this
dissertation is on revising and up-scaling the biotic and abiotic transport processes
from leaf to canopy scales. The validity of previous modeling studies in determining
iv
the exchange rate of gases and particles is evaluated with detailed descriptions of their
limitations. Mechanistic-based modeling approaches along with empirical studies
across dierent scales are employed to rene the mathematical descriptions of surface
conductance responsible for gas and particle exchanges as commonly adopted by all
operational models. Specically, how variation in horizontal leaf area density within
the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes
and thereby the ultrane particle collection eciency at the leaf/branch scale
is explored using wind tunnel experiments with interpretations by a porous media
model and a scaling analysis. A multi-layered and size-resolved second-order closure
model combined with particle
uxes and concentration measurements within and
above a forest is used to explore the particle transport processes within the canopy
sub-layer and the partitioning of particle deposition onto canopy medium and forest
oor. For gases, a modeling framework accounting for the leaf-level boundary layer
eects on the stomatal pathway for gas exchange is proposed and combined with sap
ux measurements in a wind tunnel to assess how leaf-level transpiration varies with
increasing wind speed. How exogenous environmental conditions and endogenous
soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and
below-ground water dynamics in the soil-plant system and shape plant responses
to droughts is assessed by a porous media model that accommodates the transient
water
ow within the plant vascular system and is coupled with the aforementioned
leaf-level gas exchange model and soil-root interaction model. It should be noted
that tackling all aspects of potential issues causing uncertainties in forecasting the
feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single
dissertation but further research questions and opportunities based on the foundation
derived from this dissertation are also brie
y discussed.
Resumo:
The interaction between stromal cell-derived factor-1 (SDF-1) with CXCR4 chemokine receptors plays an important role in hematopoiesis following hematopoietic stem cell transplantation. We examined the efficacy of post transplant administration of a specific CXCR4 antagonist (AMD3100) in improving animal survival and in enhancing donor hematopoietic cell engraftment using a congeneic mouse transplantation model. AMD3100 was administered subcutaneously at 5 mg/kg body weight 3 times a week beginning at day +2 post-transplant. Post-transplant administration of AMD3100 significantly improves animal survival. AMD3100 reduces pro-inflammatory cytokine/chemokine production. Furthermore, post transplant administration of AMD3100 selectively enhances donor cell engraftment and promotes recovery of all donor cell lineages (myeloid cells, T and B lymphocytes, erythrocytes and platelets). This enhancement results from a combined effect of increased marrow niche availability and greater cell division induced by AMD3100. Our studies shed new lights into the biological roles of SDF-1/CXCR4 interaction in hematopoietic stem cell engraftment following transplantation and in transplant-related mortality. Our results indicate that AMD3100 provides a novel approach for enhancing hematological recovery following transplantation, and will likely benefit patients undergoing transplantation.
Resumo:
INTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.