20 resultados para Neural classifiers
em Duke University
Resumo:
As more diagnostic testing options become available to physicians, it becomes more difficult to combine various types of medical information together in order to optimize the overall diagnosis. To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion technique to combine heterogeneous information, such as from different modalities, feature categories, or institutions. For classifier comparison we used two performance metrics: The receiving operator characteristic (ROC) area under the curve [area under the ROC curve (AUC)] and the normalized partial area under the curve (pAUC). This study used four classifiers: Linear discriminant analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We applied each of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One of mass lesion features and a much more challenging one of microcalcification lesion features. For the calcification data set, DF-A outperformed the other classifiers in terms of AUC (p < 0.02) and achieved AUC=0.85 +/- 0.01. The DF-P surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC=0.38 +/- 0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) and achieved AUC=0.94 +/- 0.01. Although for this data set there were no statistically significant differences among the classifiers' pAUC values (pAUC=0.57 +/- 0.07 to 0.67 +/- 0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically significant performance measures, such as AUC and pAUC, and sometimes outperformed two well-known machine-learning techniques when applied to two different breast cancer data sets.
Resumo:
The successful design of biomaterial scaffolds for articular cartilage tissue engineering requires an understanding of the impact of combinations of material formulation parameters on diverse and competing functional outcomes of biomaterial performance. This study sought to explore the use of a type of unsupervised artificial network, a self-organizing map, to identify relationships between scaffold formulation parameters (crosslink density, molecular weight, and concentration) and 11 such outcomes (including mechanical properties, matrix accumulation, metabolite usage and production, and histological appearance) for scaffolds formed from crosslinked elastin-like polypeptide (ELP) hydrogels. The artificial neural network recognized patterns in functional outcomes and provided a set of relationships between ELP formulation parameters and measured outcomes. Mapping resulted in the best mean separation amongst neurons for mechanical properties and pointed to crosslink density as the strongest predictor of most outcomes, followed by ELP concentration. The map also grouped formulations together that simultaneously resulted in the highest values for matrix production, greatest changes in metabolite consumption or production, and highest histological scores, indicating that the network was able to recognize patterns amongst diverse measurement outcomes. These results demonstrated the utility of artificial neural network tools for recognizing relationships in systems with competing parameters, toward the goal of optimizing and accelerating the design of biomaterial scaffolds for articular cartilage tissue engineering.
Resumo:
Although people do not normally try to remember associations between faces and physical contexts, these associations are established automatically, as indicated by the difficulty of recognizing familiar faces in different contexts ("butcher-on-the-bus" phenomenon). The present fMRI study investigated the automatic binding of faces and scenes. In the face-face (F-F) condition, faces were presented alone during both encoding and retrieval, whereas in the face/scene-face (FS-F) condition, they were presented overlaid on scenes during encoding but alone during retrieval (context change). Although participants were instructed to focus only on the faces during both encoding and retrieval, recognition performance was worse in the FS-F than in the F-F condition ("context shift decrement" [CSD]), confirming automatic face-scene binding during encoding. This binding was mediated by the hippocampus as indicated by greater subsequent memory effects (remembered > forgotten) in this region for the FS-F than the F-F condition. Scene memory was mediated by right parahippocampal cortex, which was reactivated during successful retrieval when the faces were associated with a scene during encoding (FS-F condition). Analyses using the CSD as a regressor yielded a clear hemispheric asymmetry in medial temporal lobe activity during encoding: Left hippocampal and parahippocampal activity was associated with a smaller CSD, indicating more flexible memory representations immune to context changes, whereas right hippocampal/rhinal activity was associated with a larger CSD, indicating less flexible representations sensitive to context change. Taken together, the results clarify the neural mechanisms of context effects on face recognition.
Resumo:
Brain tumors are typically resistant to conventional chemotherapeutics, most of which initiate apoptosis upstream of mitochondrial cytochrome c release. In this study, we demonstrate that directly activating apoptosis downstream of the mitochondria, with cytosolic cytochrome c, kills brain tumor cells but not normal brain tissue. Specifically, cytosolic cytochrome c is sufficient to induce apoptosis in glioblastoma and medulloblastoma cell lines. In contrast, primary neurons from the cerebellum and cortex are remarkably resistant to cytosolic cytochrome c. Importantly, tumor tissue from mouse models of both high-grade astrocytoma and medulloblastoma display hypersensitivity to cytochrome c when compared with surrounding brain tissue. This differential sensitivity to cytochrome c is attributed to high Apaf-1 levels in the tumor tissue compared with low Apaf-1 levels in the adjacent brain tissue. These differences in Apaf-1 abundance correlate with differences in the levels of E2F1, a previously identified activator of Apaf-1 transcription. ChIP assays reveal that E2F1 binds the Apaf-1 promoter specifically in tumor tissue, suggesting that E2F1 contributes to the expression of Apaf-1 in brain tumors. Together, these results demonstrate an unexpected sensitivity of brain tumors to postmitochondrial induction of apoptosis. Moreover, they raise the possibility that this phenomenon could be exploited therapeutically to selectively kill brain cancer cells while sparing the surrounding brain parenchyma.
Resumo:
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
Resumo:
We all experience a host of common life stressors such as the death of a family member, medical illness, and financial uncertainty. While most of us are resilient to such stressors, continuing to function normally, for a subset of individuals, experiencing these stressors increases the likelihood of developing treatment-resistant, chronic psychological problems, including depression and anxiety. It is thus paramount to identify predictive markers of risk, particularly those reflecting fundamental biological processes that can be targets for intervention and prevention. Using data from a longitudinal study of 340 healthy young adults, we demonstrate that individual differences in threat-related amygdala reactivity predict psychological vulnerability to life stress occurring as much as 1 to 4 years later. These results highlight a readily assayed biomarker, threat-related amygdala reactivity, which predicts psychological vulnerability to commonly experienced stressors and represents a discrete target for intervention and prevention.
Resumo:
Posttraumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contributions of the large-scale neural networks supporting cognition in PTSD is unknown. In the present functional MRI study, we employed independent-component analysis to examine the influence of the engagement of neural networks during the recall of personal memories in a PTSD group (15 participants) as compared to non-trauma-exposed healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to the controls during AM recall, including default-network subsystems and control networks, but group differences emerged in the spatial and temporal characteristics of these networks. First, we found spatial differences in the contributions of the anterior and posterior midline across the networks, and of the amygdala in particular, for the medial temporal subsystem of the default network. Second, we found temporal differences within the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that the spatial and temporal characteristics of the default and control networks potentially differ in a PTSD group versus healthy controls and contribute to altered recall of personal memory.
Resumo:
Older adults recall less episodically rich autobiographical memories (AM), however, the neural basis of this effect is not clear. Using functional MRI, we examined the effects of age during search and elaboration phases of AM retrieval. Our results suggest that the age-related attenuation in the episodic richness of AMs is associated with difficulty in the strategic retrieval processes underlying recovery of information during elaboration. First, age effects on AM activity were more pronounced during elaboration than search, with older adults showing less sustained recruitment of the hippocampus and ventrolateral prefrontal cortex (VLPFC) for less episodically rich AMs. Second, there was an age-related reduction in the modulation of top-down coupling of the VLPFC on the hippocampus for episodically rich AMs. In sum, the present study shows that changes in the sustained response and coupling of the hippocampus and prefrontal cortex (PFC) underlie age-related reductions in episodic richness of the personal past.
Resumo:
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.
Resumo:
Remembering past events - or episodic retrieval - consists of several components. There is evidence that mental imagery plays an important role in retrieval and that the brain regions supporting imagery overlap with those supporting retrieval. An open issue is to what extent these regions support successful vs. unsuccessful imagery and retrieval processes. Previous studies that examined regional overlap between imagery and retrieval used uncontrolled memory conditions, such as autobiographical memory tasks, that cannot distinguish between successful and unsuccessful retrieval. A second issue is that fMRI studies that compared imagery and retrieval have used modality-aspecific cues that are likely to activate auditory and visual processing regions simultaneously. Thus, it is not clear to what extent identified brain regions support modality-specific or modality-independent imagery and retrieval processes. In the current fMRI study, we addressed this issue by comparing imagery to retrieval under controlled memory conditions in both auditory and visual modalities. We also obtained subjective measures of imagery quality allowing us to dissociate regions contributing to successful vs. unsuccessful imagery. Results indicated that auditory and visual regions contribute both to imagery and retrieval in a modality-specific fashion. In addition, we identified four sets of brain regions with distinct patterns of activity that contributed to imagery and retrieval in a modality-independent fashion. The first set of regions, including hippocampus, posterior cingulate cortex, medial prefrontal cortex and angular gyrus, showed a pattern common to imagery/retrieval and consistent with successful performance regardless of task. The second set of regions, including dorsal precuneus, anterior cingulate and dorsolateral prefrontal cortex, also showed a pattern common to imagery and retrieval, but consistent with unsuccessful performance during both tasks. Third, left ventrolateral prefrontal cortex showed an interaction between task and performance and was associated with successful imagery but unsuccessful retrieval. Finally, the fourth set of regions, including ventral precuneus, midcingulate cortex and supramarginal gyrus, showed the opposite interaction, supporting unsuccessful imagery, but successful retrieval performance. Results are discussed in relation to reconstructive, attentional, semantic memory, and working memory processes. This is the first study to separate the neural correlates of successful and unsuccessful performance for both imagery and retrieval and for both auditory and visual modalities.
Resumo:
To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.
Resumo:
Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events.
Resumo:
We sought to map the time course of autobiographical memory retrieval, including brain regions that mediate phenomenological experiences of reliving and emotional intensity. Participants recalled personal memories to auditory word cues during event-related functional magnetic resonance imaging (fMRI). Participants pressed a button when a memory was accessed, maintained and elaborated the memory, and then gave subjective ratings of emotion and reliving. A novel fMRI approach based on timing differences capitalized on the protracted reconstructive process of autobiographical memory to segregate brain areas contributing to initial access and later elaboration and maintenance of episodic memories. The initial period engaged hippocampal, retrosplenial, and medial and right prefrontal activity, whereas the later period recruited visual, precuneus, and left prefrontal activity. Emotional intensity ratings were correlated with activity in several regions, including the amygdala and the hippocampus during the initial period. Reliving ratings were correlated with activity in visual cortex and ventromedial and inferior prefrontal regions during the later period. Frontopolar cortex was the only brain region sensitive to emotional intensity across both periods. Results were confirmed by time-locked averages of the fMRI signal. The findings indicate dynamic recruitment of emotion-, memory-, and sensory-related brain regions during remembering and their dissociable contributions to phenomenological features of the memories.
Resumo:
OBJECTIVE: The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. METHOD: Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. RESULTS: In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. CONCLUSIONS: In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.
Resumo:
The naming impairments in Alzheimer's disease (AD) have been attributed to a variety of cognitive processing deficits, including impairments in semantic memory, visual perception, and lexical access. To further understand the underlying biological basis of the naming failures in AD, the present investigation examined the relationship of various classes of naming errors to regional brain measures of cerebral glucose metabolism as measured with 18 F-Fluoro-2-deoxyglucose (FDG) and positron emission tomography (PET). Errors committed on a visual naming test were categorized according to a cognitive processing schema and then examined in relationship to metabolism within specific brain regions. The results revealed an association of semantic errors with glucose metabolism in the frontal and temporal regions. Language access errors, such as circumlocutions, and word blocking nonresponses were associated with decreased metabolism in areas within the left hemisphere. Visuoperceptive errors were related to right inferior parietal metabolic function. The findings suggest that specific brain areas mediate the perceptual, semantic, and lexical processing demands of visual naming and that visual naming problems in dementia are related to dysfunction in specific neural circuits.