9 resultados para Net theory
em Duke University
Resumo:
This paper introduces a new model of exchange: networks, rather than markets, of buyers and sellers. It begins with the empirically motivated premise that a buyer and seller must have a relationship, a "link," to exchange goods. Networks - buyers, sellers, and the pattern of links connecting them - are common exchange environments. This paper develops a methodology to study network structures and explains why agents may form networks. In a model that captures characteristics of a variety of industries, the paper shows that buyers and sellers, acting strategically in their own self-interests, can form the network structures that maximize overall welfare.
Resumo:
Patients with life-threatening conditions sometimes appear to make risky treatment decisions as their condition declines, contradicting the risk-averse behavior predicted by expected utility theory. Prospect theory accommodates such decisions by describing how individuals evaluate outcomes relative to a reference point and how they exhibit risk-seeking behavior over losses relative to that point. The authors show that a patient's reference point for his or her health is a key factor in determining which treatment option the patient selects, and they examine under what circumstances the more risky option is selected. The authors argue that patients' reference points may take time to adjust following a change in diagnosis, with implications for predicting under what circumstances a patient may select experimental or conventional therapies or select no treatment.
A mathematical theory of stochastic microlensing. II. Random images, shear, and the Kac-Rice formula
Resumo:
Continuing our development of a mathematical theory of stochastic microlensing, we study the random shear and expected number of random lensed images of different types. In particular, we characterize the first three leading terms in the asymptotic expression of the joint probability density function (pdf) of the random shear tensor due to point masses in the limit of an infinite number of stars. Up to this order, the pdf depends on the magnitude of the shear tensor, the optical depth, and the mean number of stars through a combination of radial position and the star's mass. As a consequence, the pdf's of the shear components are seen to converge, in the limit of an infinite number of stars, to shifted Cauchy distributions, which shows that the shear components have heavy tails in that limit. The asymptotic pdf of the shear magnitude in the limit of an infinite number of stars is also presented. All the results on the random microlensing shear are given for a general point in the lens plane. Extending to the general random distributions (not necessarily uniform) of the lenses, we employ the Kac-Rice formula and Morse theory to deduce general formulas for the expected total number of images and the expected number of saddle images. We further generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of global expected number of positive parity images due to a general lensing map. Applying the result to microlensing, we calculate the asymptotic global expected number of minimum images in the limit of an infinite number of stars, where the stars are uniformly distributed. This global expectation is bounded, while the global expected number of images and the global expected number of saddle images diverge as the order of the number of stars. © 2009 American Institute of Physics.
Resumo:
Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.
Resumo:
Hannah Arendt's theory of political judgment has been an ongoing perplexity among scholars who have written on her. As a result, her theory of judgment is often treated as a suggestive but unfinished aspect of her thought. Drawing on a wider array of sources than is commonly utilized, I argue that her theory of political judgment was in fact the heart of her work. Arendt's project, in other words, centered around reestablishing the possibility of political judgment in a modern world that historically has progressively undermined it. In the dissertation, I systematically develop an account of Arendt's fundamentally political and non-sovereign notion of judgment. We discover that individual judgment is not arbitrary, and that even in the complex circumstances of the modern world there are valid structures of judgment which can be developed and dependably relied upon. The result of this work articulates a theory of practical reason which is highly compelling: it provides orientation for human agency which does not rob it of its free and spontaneous character; shows how we can improve and cultivate our political judgment; and points the way toward the profoundly intersubjective form of political philosophy Arendt ultimately hoped to develop.
Resumo:
Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.
Resumo:
We present a theory of hypoellipticity and unique ergodicity for semilinear parabolic stochastic PDEs with "polynomial" nonlinearities and additive noise, considered as abstract evolution equations in some Hilbert space. It is shown that if Hörmander's bracket condition holds at every point of this Hilbert space, then a lower bound on the Malliavin covariance operatorμt can be obtained. Informally, this bound can be read as "Fix any finite-dimensional projection on a subspace of sufficiently regular functions. Then the eigenfunctions of μt with small eigenvalues have only a very small component in the image of Π." We also show how to use a priori bounds on the solutions to the equation to obtain good control on the dependency of the bounds on the Malliavin matrix on the initial condition. These bounds are sufficient in many cases to obtain the asymptotic strong Feller property introduced in [HM06]. One of the main novel technical tools is an almost sure bound from below on the size of "Wiener polynomials," where the coefficients are possibly non-adapted stochastic processes satisfying a Lips chitz condition. By exploiting the polynomial structure of the equations, this result can be used to replace Norris' lemma, which is unavailable in the present context. We conclude by showing that the two-dimensional stochastic Navier-Stokes equations and a large class of reaction-diffusion equations fit the framework of our theory.
Resumo:
An event memory is a mental construction of a scene recalled as a single occurrence. It therefore requires the hippocampus and ventral visual stream needed for all scene construction. The construction need not come with a sense of reliving or be made by a participant in the event, and it can be a summary of occurrences from more than one encoding. The mental construction, or physical rendering, of any scene must be done from a specific location and time; this introduces a "self" located in space and time, which is a necessary, but need not be a sufficient, condition for a sense of reliving. We base our theory on scene construction rather than reliving because this allows the integration of many literatures and because there is more accumulated knowledge about scene construction's phenomenology, behavior, and neural basis. Event memory differs from episodic memory in that it does not conflate the independent dimensions of whether or not a memory is relived, is about the self, is recalled voluntarily, or is based on a single encoding with whether it is recalled as a single occurrence of a scene. Thus, we argue that event memory provides a clearer contrast to semantic memory, which also can be about the self, be recalled voluntarily, and be from a unique encoding; allows for a more comprehensive dimensional account of the structure of explicit memory; and better accounts for laboratory and real-world behavioral and neural results, including those from neuropsychology and neuroimaging, than does episodic memory.
Resumo:
© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.A key component in calculations of exchange and correlation energies is the Coulomb operator, which requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-function products in an auxiliary basis. In this work we show the practical applicability of a localized RI-variant ('RI-LVL'), which expands products of basis functions only in the subset of those auxiliary basis functions which are located at the same atoms as the basis functions. We demonstrate the accuracy of RI-LVL for Hartree-Fock calculations, for the PBE0 hybrid density functional, as well as for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly interacting molecules, the G3 test set, as well as the G2-1 and BH76 test sets, and heavy elements including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-body perturbation theory with significantly reduced computational and memory cost.