3 resultados para Nakagami-m fading channel
em Duke University
Resumo:
© 2015 IEEE.We consider a wireless control architecture with multiple control loops over a shared wireless medium. A scheduler observes the random channel conditions that each control system experiences over the shared medium and opportunistically selects systems to transmit at a set of non-overlapping frequencies. The transmit power of each system also adapts to channel conditions and determines the probability of successfully receiving and closing the loop. We formulate the optimal design of channel-aware scheduling and power allocation that minimize the total power consumption while meeting control performance requirements for all systems. In particular, it is required that for each control system a given Lyapunov function decreases at a specified rate in expectation over the random channel conditions. We develop an offline algorithm to find the optimal communication design, as well as an online protocol which selects scheduling and power variables based on a random observed channel sequence and converges almost surely to the optimal operating point. Simulations illustrate the power savings of our approach compared to other non-channel-aware schemes.
Resumo:
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.