2 resultados para Nakagami Fading Channels

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

© 2015 IEEE.We consider a wireless control architecture with multiple control loops over a shared wireless medium. A scheduler observes the random channel conditions that each control system experiences over the shared medium and opportunistically selects systems to transmit at a set of non-overlapping frequencies. The transmit power of each system also adapts to channel conditions and determines the probability of successfully receiving and closing the loop. We formulate the optimal design of channel-aware scheduling and power allocation that minimize the total power consumption while meeting control performance requirements for all systems. In particular, it is required that for each control system a given Lyapunov function decreases at a specified rate in expectation over the random channel conditions. We develop an offline algorithm to find the optimal communication design, as well as an online protocol which selects scheduling and power variables based on a random observed channel sequence and converges almost surely to the optimal operating point. Simulations illustrate the power savings of our approach compared to other non-channel-aware schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial Na(+) channels mediate the transport of Na across epithelia in the kidney, gut, and lungs and are required for blood pressure regulation. They are inhibited by ubiquitin protein ligases, such as Nedd4 and Nedd4-2, with loss of this inhibition leading to hypertension. Here, we report that these channels are maintained in the active state by the G protein-coupled receptor kinase, Grk2, which has been previously implicated in the development of essential hypertension. We also show that Grk2 phosphorylates the C terminus of the channel beta subunit and renders the channels insensitive to inhibition by Nedd4-2. This mechanism has not been previously reported to regulate epithelial Na(+) channels and provides a potential explanation for the observed association of Grk2 overactivity with hypertension. Here, we report a G protein-coupled receptor kinase regulating a membrane protein other than a receptor and provide a paradigm for understanding how the interaction between membrane proteins and ubiquitin protein ligases is controlled.