4 resultados para NEUTRON-STAR DENSITIES

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sensor-augmented pump therapy (SAPT) integrates real-time continuous glucose monitoring (RT-CGM) with continuous subcutaneous insulin infusion (CSII) and offers an alternative to multiple daily injections (MDI). Previous studies provide evidence that SAPT may improve clinical outcomes among people with type 1 diabetes. Sensor-Augmented Pump Therapy for A1c Reduction (STAR) 3 is a multicenter randomized controlled trial comparing the efficacy of SAPT to that of MDI in subjects with type 1 diabetes. METHODS: Subjects were randomized to either continue with MDI or transition to SAPT for 1 year. Subjects in the MDI cohort were allowed to transition to SAPT for 6 months after completion of the study. SAPT subjects who completed the study were also allowed to continue for 6 months. The primary end point was the difference between treatment groups in change in hemoglobin A1c (HbA1c) percentage from baseline to 1 year of treatment. Secondary end points included percentage of subjects with HbA1c < or =7% and without severe hypoglycemia, as well as area under the curve of time spent in normal glycemic ranges. Tertiary end points include percentage of subjects with HbA1c < or =7%, key safety end points, user satisfaction, and responses on standardized assessments. RESULTS: A total of 495 subjects were enrolled, and the baseline characteristics similar between the SAPT and MDI groups. Study completion is anticipated in June 2010. CONCLUSIONS: Results of this randomized controlled trial should help establish whether an integrated RT-CGM and CSII system benefits patients with type 1 diabetes more than MDI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 IOP Publishing Ltd & London Mathematical Society.This is a detailed analysis of invariant measures for one-dimensional dynamical systems with random switching. In particular, we prove the smoothness of the invariant densities away from critical points and describe the asymptotics of the invariant densities at critical points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally- derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.