2 resultados para NEUTRON SPIN STRUCTURE
em Duke University
Resumo:
Experiments at Jefferson Lab have been conducted to extract the nucleon spin-dependent structure functions over a wide kinematic range. Higher moments of these quantities provide tests of QCD sum rules and predictions of chiral perturbation theory ($\chi$PT). While precise measurements of $g_{1}^n$, $g_{2}^n$, and $g_1^p$ have been extensively performed, the data of $g_2^p$ remain scarce. Discrepancies were found between existing data related to $g_2$ and theoretical predictions. Results on the proton at large $Q^2$ show a significant deviation from the Burkhardt-Cottingham sum rule, while results for the neutron generally follow this sum rule. The next-to-leading order $\chi$PT calculations exhibit discrepancy with data on the longitudinal-transverse polarizability $\delta_{LT}^n$. Further measurements of the proton spin structure function $g_2^p$ are desired to understand these discrepancies.
Experiment E08-027 (g2p) was conducted at Jefferson Lab in experimental Hall A in 2012. Inclusive measurements were performed with polarized electron beam and a polarized ammonia target to obtain the proton spin-dependent structure function $g_2^p$ at low Q$^2$ region (0.02$<$Q$^2$$<$0.2 GeV$^2$) for the first time. The results can be used to test the Burkhardt-Cottingham sum rule, and also allow us to extract the longitudinal-transverse spin polarizability of the proton, which will provide a benchmark test of $\chi$PT calculations. This thesis will present and discuss the very preliminary results of the transverse asymmetry and the spin-dependent structure functions $g_1^p$ and $g_2^p$ from the data analysis of the g2p experiment .
Resumo:
Intriguing lattice dynamics has been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr14Cu24O41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct acoustic phonon-like modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic phonons can explain the large magnon thermal conductivity in Sr14Cu24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states, and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.