7 resultados para Mycobacterium fortuitum
em Duke University
Resumo:
Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City.
Resumo:
The MazEF toxin-antitoxin (TA) system consists of the antitoxin MazE and the toxin MazF. MazF is a sequence-specific endoribonuclease that upon activation causes cellular growth arrest and increass the level of persisters. Moreover, MazF-induced cells are in a quasi-dormant state that cells remain metabolically active while stop dividing. The quasi-dormancy is similar to the nonreplicating state of M. tuberculosis during latent tuberculosis, thus suggesting the role of mazEF in M. tuberculosis dormancy and persistence. M. tuberculosis has nine mazEF TA modules, each with different RNA cleavage specificities and implicated in selective gene expression during stress conditions. To date only the Bacillus subtilis MazF-RNA complex structure has been determined. As M. tuberculosis MazF homologues recognize distinct RNA sequences, their molecular mechanisms of substrate specificity remain unclear. By taking advantage of X-ray crystallography, we have determined structures of two M. tuberculosis MazF-RNA complexes, MazF-mt1 (Rv2801c) and MazF-mt3 (Rv1991c) in complex with an uncleavable RNA substrate. These structures have provided the molecular basis of sequence-specific RNA recognition and cleavage by MazF toxins.
Both MazF-mt1-RNA and MazF-mt3-RNA complexes showed similar structural organization with one molecule of RNA bound to a MazF-mt1 or MazF-mt3 dimer and occupying the same pocket within the MazF dimer interface. Similar to B. subtilis MazF-RNA complex, MazF-mt1 and MazF-mt3 displayed a conserved active site architecture, where two highly conserved residues, Arg and Thr, form hydrogen bonds with the scissile phosphate group in the cleavage site of the bound RNA. The MazF-mt1-RNA complex also showed specific interactions with its three-base RNA recognition element. Compared with the B. subtilis MazF-RNA complex, our structures showed that residues involved in sequence-specific recognition of target RNA vary between the MazF homologues, therefore explaining the molecular basis for their different RNA recognition sequences. In addition, local conformational changes of the loops in the RNA binding site of MazF-mt1 appear to play a role in MazF targeting different RNA lengths and sequences. In contrast, the MazF-mt3-RNA complex is in a non-optimal RNA binding state with a symmetry-related MazF-mt3 molecule found to make interactions with the bound RNA in the crystal. The crystal-packing interactions were further examined by isothermal titration calorimetry (ITC) studies on selected MazF-mt3 mutants. Our attempts to utilize a MazF-mt3 mutant bearing mutations involved in crystal contacts all crystallized with few nucleotides, which are still found to interact with a symmetry mate. However, these different crystal forms revealed the conformational flexibility of loops in the RNA binding interface of MazF-mt3, suggesting their role in RNA binding and recognition, which will require further studies on additional MazF-mt3-RNA complex interactions.
In conclusion, the structures of the MazF-mt1-RNA and MazF-mt3-RNA complexes provide the first structural information on any M. tuberculosis MazF homologues. Supplemented with structure-guided mutational studies on MazF toxicity in vivo, this study has addressed the structural basis of different RNA cleavage specificities among MazF homologues. Our work will guide future studies on the function of other M. tuberculosis MazF and MazE-MazF homologues, and will help delineate their physiological roles in M. tuberculosis stress responses and pathogenesis.
Resumo:
Knowing one's HIV status is particularly important in the setting of recent tuberculosis (TB) exposure. Blood tests for assessment of tuberculosis infection, such as the QuantiFERON Gold in-tube test (QFT; Cellestis Limited, Carnegie, Victoria, Australia), offer the possibility of simultaneous screening for TB and HIV with a single blood draw. We performed a cross-sectional analysis of all contacts to a highly infectious TB case in a large meatpacking factory. Twenty-two percent were foreign-born and 73% were black. Contacts were tested with both tuberculin skin testing (TST) and QFT. HIV testing was offered on an opt-out basis. Persons with TST >or=10 mm, positive QFT, and/or positive HIV test were offered latent TB treatment. Three hundred twenty-six contacts were screened: TST results were available for 266 people and an additional 24 reported a prior positive TST for a total of 290 persons with any TST result (89.0%). Adequate QFT specimens were obtained for 312 (95.7%) of persons. Thirty-two persons had QFT results but did not return for TST reading. Twenty-two percent met the criteria for latent TB infection. Eighty-eight percent accepted HIV testing. Two (0.7%) were HIV seropositive; both individuals were already aware of their HIV status, but one had stopped care a year previously. None of the HIV-seropositive persons had latent TB, but all were offered latent TB treatment per standard guidelines. This demonstrates that opt-out HIV testing combined with QFT in a large TB contact investigation was feasible and useful. HIV testing was also widely accepted. Pairing QFT with opt-out HIV testing should be strongly considered when possible.
Resumo:
The growth and proliferation of invasive bacteria in engineered systems is an ongoing problem. While there are a variety of physical and chemical processes to remove and inactivate bacterial pathogens, there are many situations in which these tools are no longer effective or appropriate for the treatment of a microbial target. For example, certain strains of bacteria are becoming resistant to commonly used disinfectants, such as chlorine and UV. Additionally, the overuse of antibiotics has contributed to the spread of antibiotic resistance, and there is concern that wastewater treatment processes are contributing to the spread of antibiotic resistant bacteria.
Due to the continually evolving nature of bacteria, it is difficult to develop methods for universal bacterial control in a wide range of engineered systems, as many of our treatment processes are static in nature. Still, invasive bacteria are present in many natural and engineered systems, where the application of broad acting disinfectants is impractical, because their use may inhibit the original desired bioprocesses. Therefore, to better control the growth of treatment resistant bacteria and to address limitations with the current disinfection processes, novel tools that are both specific and adaptable need to be developed and characterized.
In this dissertation, two possible biological disinfection processes were investigated for use in controlling invasive bacteria in engineered systems. First, antisense gene silencing, which is the specific use of oligonucleotides to silence gene expression, was investigated. This work was followed by the investigation of bacteriophages (phages), which are viruses that are specific to bacteria, in engineered systems.
For the antisense gene silencing work, a computational approach was used to quantify the number of off-targets and to determine the effects of off-targets in prokaryotic organisms. For the organisms of
Regarding the work with phages, the disinfection rates of bacteria in the presence of phages was determined. The disinfection rates of
In addition to determining disinfection rates, the long-term bacterial growth inhibition potential was determined for a variety of phages with both Gram-negative and Gram-positive bacteria. It was determined, that on average, phages can be used to inhibit bacterial growth for up to 24 h, and that this effect was concentration dependent for various phages at specific time points. Additionally, it was found that a phage cocktail was no more effective at inhibiting bacterial growth over the long-term than the best performing phage in isolation.
Finally, for an industrial application, the use of phages to inhibit invasive
In conclusion, this dissertation improved the current methods for designing antisense gene silencing targets for prokaryotic organisms, and characterized phages from an engineering perspective. First, the current design strategy for antisense targets in prokaryotic organisms was improved through the development of an algorithm that minimized the number of off-targets. For the phage work, a framework was developed to predict the disinfection rates in terms of the initial phage and bacterial concentrations. In addition, the long-term bacterial growth inhibition potential of multiple phages was determined for several bacteria. In regard to the phage application, phages were shown to protect both final product yields and yeast concentrations during fermentation. Taken together, this work suggests that the rational design of phage treatment is possible and further work is needed to expand on this foundation.
Resumo:
Pathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.
Resumo:
Transgenic labeling of innate immune cell lineages within the larval zebrafish allows for real-time, in vivo analyses of microbial pathogenesis within a vertebrate host. To date, labeling of zebrafish macrophages has been relatively limited, with the most specific expression coming from the mpeg1 promoter. However, mpeg1 transcription at both endogenous and transgenic loci becomes attenuated in the presence of intracellular pathogens, including Salmonella typhimurium and Mycobacterium marinum. Here, we describe mfap4 as a macrophage-specific promoter capable of producing transgenic lines in which transgene expression within larval macrophages remains stable throughout several days of infection. Additionally, we have developed a novel macrophage-specific Cre transgenic line under the control of mfap4, enabling macrophage-specific expression using existing floxed transgenic lines. These tools enrich the repertoire of transgenic lines and promoters available for studying zebrafish macrophage dynamics during infection and inflammation and add flexibility to the design of future macrophage-specific transgenic lines.
Resumo:
© 2014 .The adoption of antisense gene silencing as a novel disinfectant for prokaryotic organisms is hindered by poor silencing efficiencies. Few studies have considered the effects of off-targets on silencing efficiencies, especially in prokaryotic organisms. In this computational study, a novel algorithm was developed that determined and sorted the number of off-targets as a function of alignment length in Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv. The mean number of off-targets per a single location was calculated to be 14.1. ±. 13.3 and 36.1. ±. 58.5 for the genomes of E. coli K-12 MG1655 and M. tuberculosis H37Rv, respectively. Furthermore, when the entire transcriptome was analyzed, it was found that there was no general gene location that could be targeted to minimize or maximize the number of off-targets. In an effort to determine the effects of off-targets on silencing efficiencies, previously published studies were used. Analyses with acpP, ino1, and marORAB revealed a statistically significant relationship between the number of short alignment length off-targets hybrids and the efficacy of the antisense gene silencing, suggesting that the minimization of off-targets may be beneficial for antisense gene silencing in prokaryotic organisms.