2 resultados para Multilevel model

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, the trend towards decentralization is far-reaching. Proponents of decentralization have argued that decentralization promotes responsive and accountable local government by shortening the distance between local representatives and their constituency. However, in this paper, I focus on the countervailing effect of decentralization on the accountability mechanism, arguing that decentralization, which increases the number of actors eligible for policy making and implementation in governance as a whole, may blur lines of responsibility, thus weakening citizens’ ability to sanction government in election. By using the ordinary least squares (OLS) interaction model based on historical panel data for 78 countries in the 2002 – 2010 period, I test the hypothesis that as the number of government tiers increases, there will be a negative interaction between the number of government tiers and decentralization policies. The regression results show empirical evidence that decentralization policies, having a positive impact on governance under a relatively simple form of multilevel governance, have no more statistically significant effects as the complexity of government structure exceeds a certain degree. In particular, this paper found that the presence of intergovernmental meeting with legally binding authority have a negative impact on governance when the complexity of government structure reaches to the highest level.