7 resultados para Multidimensional. Development. Convergence. Divergence. Analysis of groupings
em Duke University
Resumo:
Thermodynamic stability measurements on proteins and protein-ligand complexes can offer insights not only into the fundamental properties of protein folding reactions and protein functions, but also into the development of protein-directed therapeutic agents to combat disease. Conventional calorimetric or spectroscopic approaches for measuring protein stability typically require large amounts of purified protein. This requirement has precluded their use in proteomic applications. Stability of Proteins from Rates of Oxidation (SPROX) is a recently developed mass spectrometry-based approach for proteome-wide thermodynamic stability analysis. Since the proteomic coverage of SPROX is fundamentally limited by the detection of methionine-containing peptides, the use of tryptophan-containing peptides was investigated in this dissertation. A new SPROX-like protocol was developed that measured protein folding free energies using the denaturant dependence of the rate at which globally protected tryptophan and methionine residues are modified with dimethyl (2-hydroxyl-5-nitrobenzyl) sulfonium bromide and hydrogen peroxide, respectively. This so-called Hybrid protocol was applied to proteins in yeast and MCF-7 cell lysates and achieved a ~50% increase in proteomic coverage compared to probing only methionine-containing peptides. Subsequently, the Hybrid protocol was successfully utilized to identify and quantify both known and novel protein-ligand interactions in cell lysates. The ligands under study included the well-known Hsp90 inhibitor geldanamycin and the less well-understood omeprazole sulfide that inhibits liver-stage malaria. In addition to protein-small molecule interactions, protein-protein interactions involving Puf6 were investigated using the SPROX technique in comparative thermodynamic analyses performed on wild-type and Puf6-deletion yeast strains. A total of 39 proteins were detected as Puf6 targets and 36 of these targets were previously unknown to interact with Puf6. Finally, to facilitate the SPROX/Hybrid data analysis process and minimize human errors, a Bayesian algorithm was developed for transition midpoint assignment. In summary, the work in this dissertation expanded the scope of SPROX and evaluated the use of SPROX/Hybrid protocols for characterizing protein-ligand interactions in complex biological mixtures.
Resumo:
In recent years, the storage and use of residual newborn screening (NBS) samples has gained attention. To inform ongoing policy discussions, this article provides an update of previous work on new policies, educational materials, and parental options regarding the storage and use of residual NBS samples. A review of state NBS Web sites was conducted for information related to the storage and use of residual NBS samples in January 2010. In addition, a review of current statutes and bills introduced between 2005 and 2009 regarding storage and/or use of residual NBS samples was conducted. Fourteen states currently provide information about the storage and/or use of residual NBS samples. Nine states provide parents the option to request destruction of the residual NBS sample after the required storage period or the option to exclude the sample for research uses. In the coming years, it is anticipated that more states will consider policies to address parental concerns about the storage and use of residual NBS samples. Development of new policies regarding storage and use of residual NBS samples will require careful consideration of impact on NBS programs, parent and provider educational materials, and respect for parents among other issues.
Resumo:
Shame has been shown to predict sexual HIV transmission risk behavior, medication non-adherence, symptomatic HIV or AIDS, and symptoms of depression and PTSD. However, there remains a dearth of tools to measure the specific constructs of HIV-related and sexual abuse-related shame. To ameliorate this gap, we present a 31-item measure that assesses HIV and sexual abuse-related shame, and the impact of shame on HIV-related health behaviors. A diverse sample of 271 HIV-positive men and women who were sexually abused as children completed the HIV and Abuse Related Shame Inventory (HARSI) among other measures. An exploratory factor analysis supported the retention of three-factors, explaining 56.7% of the sample variance. These internally consistent factors showed good test-retest reliability, and sound convergent and divergent validity using eight well-established HIV specific and general psychosocial criterion measures. Unlike stigma or discrimination, shame is potentially alterable through individually-focused interventions, making the measurement of shame clinically meaningful.
Resumo:
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data.
Resumo:
PREMISE OF THE STUDY: We investigated the origins of 252 Southern Appalachian woody species representing 158 clades to analyze larger patterns of biogeographic connectivity around the northern hemisphere. We tested biogeographic hypotheses regarding the timing of species disjunctions to eastern Asia and among areas of North America. METHODS: We delimited species into biogeographically informative clades, compiled sister-area data, and generated graphic representations of area connections across clades. We calculated taxon diversity within clades and plotted divergence times. KEY RESULTS: Of the total taxon diversity, 45% were distributed among 25 North American endemic clades. Sister taxa within eastern North America and eastern Asia were proportionally equal in frequency, accounting for over 50% of the sister-area connections. At increasing phylogenetic depth, connections to the Old World dominated. Divergence times for 65 clades with intercontinental disjunctions were continuous, whereas 11 intracontinental disjunctions to western North America and nine to eastern Mexico were temporally congruent. CONCLUSIONS: Over one third of the clades have likely undergone speciation within the region of eastern North America. The biogeographic pattern for the region is asymmetric, consisting of mostly mixed-aged, low-diversity clades connecting to the Old World, and a minority of New World clades. Divergence time data suggest that climate change in the Late Miocene to Early Pliocene generated disjunct patterns within North America. Continuous splitting times during the last 45 million years support the hypothesis that widespread distributions formed repeatedly during favorable periods, with serial cooling trends producing pseudocongruent area disjunctions between eastern North America and eastern Asia.
Resumo:
The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.
Resumo:
Body size and development time are important life history traits because they are often highly correlated with fitness. Although the developmental mechanisms that control growth have been well studied, the mechanisms that control how a species-characteristic body size is achieved remain poorly understood. In insects adult body size is determined by the number of larval molts, the size increment at each molt, and the mechanism that determines during which instar larval growth will stop. Adult insects do not grow, so the size at which a larva stops growing determines adult body size. Here we develop a quantitative understanding of the kinetics of growth throughout larval life of Manduca sexta, under different conditions of nutrition and temperature, and for genetic strains with different adult body sizes. We show that the generally accepted view that the size increment at each molt is constant (Dyar's Rule) is systematically violated: there is actually a progressive increase in the size increment from instar to instar that is independent of temperature. In addition, the mass-specific growth rate declines throughout the growth phase in a temperature-dependent manner. We show that growth within an instar follows a truncated Gompertz trajectory. The critical weight, which determines when in an instar a molt will occur, and the threshold size, which determines which instar is the last, are different in genetic strains with different adult body sizes. Under nutrient and temperature stress Manduca has a variable number of larval instars and we show that this is due to the fact that more molts at smaller increments are taken before threshold size is reached. We test whether the new insight into the kinetics of growth and size determination are sufficient to explain body size and development time through a mathematical model that incorporates our quantitative findings.