3 resultados para Multi-resolution Method
em Duke University
Resumo:
Testing for two-sample differences is challenging when the differences are local and only involve a small portion of the data. To solve this problem, we apply a multi- resolution scanning framework that performs dependent local tests on subsets of the sample space. We use a nested dyadic partition of the sample space to get a collection of windows and test for sample differences within each window. We put a joint prior on the states of local hypotheses that allows both vertical and horizontal message passing among the partition tree to reflect the spatial dependency features among windows. This information passing framework is critical to detect local sample differences. We use both the loopy belief propagation algorithm and MCMC to get the posterior null probability on each window. These probabilities are then used to report sample differences based on decision procedures. Simulation studies are conducted to illustrate the performance. Multiple testing adjustment and convergence of the algorithms are also discussed.
Resumo:
Advancements in retinal imaging technologies have drastically improved the quality of eye care in the past couple decades. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) are two examples of critical imaging modalities for the diagnosis of retinal pathologies. However current-generation SLO and OCT systems have limitations in diagnostic capability due to the following factors: the use of bulky tabletop systems, monochromatic imaging, and resolution degradation due to ocular aberrations and diffraction.
Bulky tabletop SLO and OCT systems are incapable of imaging patients that are supine, under anesthesia, or otherwise unable to maintain the required posture and fixation. Monochromatic SLO and OCT imaging prevents the identification of various color-specific diagnostic markers visible with color fundus photography like those of neovascular age-related macular degeneration. Resolution degradation due to ocular aberrations and diffraction has prevented the imaging of photoreceptors close to the fovea without the use of adaptive optics (AO), which require bulky and expensive components that limit the potential for widespread clinical use.
In this dissertation, techniques for extending the diagnostic capability of SLO and OCT systems are developed. These techniques include design strategies for miniaturizing and combining SLO and OCT to permit multi-modal, lightweight handheld probes to extend high quality retinal imaging to pediatric eye care. In addition, a method for extending true color retinal imaging to SLO to enable high-contrast, depth-resolved, high-fidelity color fundus imaging is demonstrated using a supercontinuum light source. Finally, the development and combination of SLO with a super-resolution confocal microscopy technique known as optical photon reassignment (OPRA) is demonstrated to enable high-resolution imaging of retinal photoreceptors without the use of adaptive optics.
Resumo:
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.
Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.
Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.
Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.