3 resultados para Multi-layered analysis

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as

`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol

particles and greenhouse gases (GHGs) as responses to their surrounding environments.

While the signicance of quantifying the exchange rates of GHGs and atmospheric

aerosol particles between the terrestrial biosphere and the atmosphere is

hardly questioned in many scientic elds, the progress in improving model predictability,

data interpretation or the combination of the two remains impeded by

the lack of precise framework elucidating their dynamic transport processes over a

wide range of spatiotemporal scales. The diculty in developing prognostic modeling

tools to quantify the source or sink strength of these atmospheric substances

can be further magnied by the fact that the climate system is also sensitive to the

feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,

the emergent need is to reduce uncertainties when assessing this complex and dynamic

feedback cycle that is necessary to support the decisions of mitigation and

adaptation policies associated with human activities (e.g., anthropogenic emission

controls and land use managements) under current and future climate regimes.

With the goal to improve the predictions for the biosphere-atmosphere exchange

of biologically active gases and atmospheric aerosol particles, the main focus of this

dissertation is on revising and up-scaling the biotic and abiotic transport processes

from leaf to canopy scales. The validity of previous modeling studies in determining

iv

the exchange rate of gases and particles is evaluated with detailed descriptions of their

limitations. Mechanistic-based modeling approaches along with empirical studies

across dierent scales are employed to rene the mathematical descriptions of surface

conductance responsible for gas and particle exchanges as commonly adopted by all

operational models. Specically, how variation in horizontal leaf area density within

the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes

and thereby the ultrane particle collection eciency at the leaf/branch scale

is explored using wind tunnel experiments with interpretations by a porous media

model and a scaling analysis. A multi-layered and size-resolved second-order closure

model combined with particle

uxes and concentration measurements within and

above a forest is used to explore the particle transport processes within the canopy

sub-layer and the partitioning of particle deposition onto canopy medium and forest

oor. For gases, a modeling framework accounting for the leaf-level boundary layer

eects on the stomatal pathway for gas exchange is proposed and combined with sap

ux measurements in a wind tunnel to assess how leaf-level transpiration varies with

increasing wind speed. How exogenous environmental conditions and endogenous

soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and

below-ground water dynamics in the soil-plant system and shape plant responses

to droughts is assessed by a porous media model that accommodates the transient

water

ow within the plant vascular system and is coupled with the aforementioned

leaf-level gas exchange model and soil-root interaction model. It should be noted

that tackling all aspects of potential issues causing uncertainties in forecasting the

feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single

dissertation but further research questions and opportunities based on the foundation

derived from this dissertation are also brie

y discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because the interactions between feedforward influences are inextricably linked during many motor outputs (including but not limited to walking), the contribution of descending inputs to the generation of movements is difficult to study. Here we take advantage of the relatively small number of descending neurons (DNs) in the Drosophila melanogaster model system. We first characterize the number and distribution of the DN populations, then present a novel load free preparation, which enables the study of descending control on limb movements in a context where sensory feedback can be is reduced while leaving the nervous system, musculature, and cuticle of the animal relatively intact. Lastly we use in-vivo whole cell patch clamp electrophysiology to characterize the role of individual DNs in response to specific sensory stimuli and in relationship to movement. We find that there are approximately 1100 DNs in Drosophila that are distributed across six clusters. Input from these DNs is not necessary for coordinated motor activity, which can be generated by the thoracic ganglion, but is necessary for the specific combinations of joint movements typically observed in walking. Lastly, we identify a particular cluster of DNs that are tuned to sensory stimuli and innervate the leg neuromeres. We propose that a multi-layered interaction between these DNs, other DNs, and motor circuits in the thoracic ganglia enable the diverse but well-coordinated range of motor outputs an animal might exhibit.