4 resultados para Multi-granular optical cross-connect
em Duke University
Resumo:
Advancements in retinal imaging technologies have drastically improved the quality of eye care in the past couple decades. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) are two examples of critical imaging modalities for the diagnosis of retinal pathologies. However current-generation SLO and OCT systems have limitations in diagnostic capability due to the following factors: the use of bulky tabletop systems, monochromatic imaging, and resolution degradation due to ocular aberrations and diffraction.
Bulky tabletop SLO and OCT systems are incapable of imaging patients that are supine, under anesthesia, or otherwise unable to maintain the required posture and fixation. Monochromatic SLO and OCT imaging prevents the identification of various color-specific diagnostic markers visible with color fundus photography like those of neovascular age-related macular degeneration. Resolution degradation due to ocular aberrations and diffraction has prevented the imaging of photoreceptors close to the fovea without the use of adaptive optics (AO), which require bulky and expensive components that limit the potential for widespread clinical use.
In this dissertation, techniques for extending the diagnostic capability of SLO and OCT systems are developed. These techniques include design strategies for miniaturizing and combining SLO and OCT to permit multi-modal, lightweight handheld probes to extend high quality retinal imaging to pediatric eye care. In addition, a method for extending true color retinal imaging to SLO to enable high-contrast, depth-resolved, high-fidelity color fundus imaging is demonstrated using a supercontinuum light source. Finally, the development and combination of SLO with a super-resolution confocal microscopy technique known as optical photon reassignment (OPRA) is demonstrated to enable high-resolution imaging of retinal photoreceptors without the use of adaptive optics.
Resumo:
RNA viruses are an important cause of global morbidity and mortality. The rapid evolutionary rates of RNA virus pathogens, caused by high replication rates and error-prone polymerases, can make the pathogens difficult to control. RNA viruses can undergo immune escape within their hosts and develop resistance to the treatment and vaccines we design to fight them. Understanding the spread and evolution of RNA pathogens is essential for reducing human suffering. In this dissertation, I make use of the rapid evolutionary rate of viral pathogens to answer several questions about how RNA viruses spread and evolve. To address each of the questions, I link mathematical techniques for modeling viral population dynamics with phylogenetic and coalescent techniques for analyzing and modeling viral genetic sequences and evolution. The first project uses multi-scale mechanistic modeling to show that decreases in viral substitution rates over the course of an acute infection, combined with the timing of infectious hosts transmitting new infections to susceptible individuals, can account for discrepancies in viral substitution rates in different host populations. The second project combines coalescent models with within-host mathematical models to identify driving evolutionary forces in chronic hepatitis C virus infection. The third project compares the effects of intrinsic and extrinsic viral transmission rate variation on viral phylogenies.
Resumo:
BACKGROUND: Recent studies have found low-normal potassium (K) to be associated with increased diabetes risk. We sought to verify these associations in a multi-ethnic US cohort; and to determine if these associations extend to US Hispanics and Asian-Americans. METHODS: We analyzed data from Multi-Ethnic Study of Atherosclerosis (MESA) participants who were free-of-diabetes at baseline. We examined cross-sectional associations between measures of K-serum, dietary, and urine-with fasting glucose and HOMA-IR. We examined longitudinal associations between K and diabetes risk over 8 years. FINDINGS: In multivariable models, compared to those with higher serum K (≥4.5mmol/L), those with lower serum K (<4.0mmol/L) had significantly higher fasting glucose [1.3 mg/dL (95%CI 0.2, 2.4), P-value = 0.03]. Incident diabetes developed in 1281 of 5415 at-risk participants. In minimally-adjusted models, we found inverse associations between serum and dietary K and diabetes risk. Compared to those with higher serum K, those with lower serum K had an HR (95% CI) of incident diabetes of 1.23 (1.04, 1.47), P-value = 0.02. However, these associations were attenuated in fully-adjusted models. We found no significant interaction between potassium and ethnicity. CONCLUSIONS: In this multi-ethnic cohort, we found a significant inverse association between serum K and fasting glucose but no significant association with longer-term diabetes risk. This inverse association between potassium and glucose must be studied further to understand the physiology and its potential impact on chronic health.
Resumo:
Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.