5 resultados para Multi-Higgs models
em Duke University
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
In this paper, we propose generalized sampling approaches for measuring a multi-dimensional object using a compact compound-eye imaging system called thin observation module by bound optics (TOMBO). This paper shows the proposed system model, physical examples, and simulations to verify TOMBO imaging using generalized sampling. In the system, an object is modulated and multiplied by a weight distribution with physical coding, and the coded optical signal is integrated on to a detector array. A numerical estimation algorithm employing a sparsity constraint is used for object reconstruction.
Resumo:
BACKGROUND: Both compulsory detoxification treatment and community-based methadone maintenance treatment (MMT) exist for heroin addicts in China. We aim to examine the effectiveness of three intervention models for referring heroin addicts released from compulsory detoxification centers to community methadone maintenance treatment (MMT) clinics in Dehong prefecture, Yunnan province, China. METHODS: Using a quasi-experimental study design, three different referral models were assigned to four detoxification centers. Heroin addicts were enrolled based on their fulfillment to eligibility criteria and provision of informed consent. Two months prior to their release, information on demographic characteristics, history of heroin use, and prior participation in intervention programs was collected via a survey, and blood samples were obtained for HIV testing. All subjects were followed for six months after release from detoxification centers. Multi-level logistic regression analysis was used to examine factors predicting successful referrals to MMT clinics. RESULTS: Of the 226 participants who were released and followed, 9.7% were successfully referred to MMT(16.2% of HIV-positive participants and 7.0% of HIV-negative participants). A higher proportion of successful referrals was observed among participants who received both referral cards and MMT treatment while still in detoxification centers (25.8%) as compared to those who received both referral cards and police-assisted MMT enrollment (5.4%) and those who received referral cards only (0%). Furthermore, those who received referral cards and MMT treatment while still in detoxification had increased odds of successful referral to an MMT clinic (adjusted OR = 1.2, CI = 1.1-1.3). Having participated in an MMT program prior to detention (OR = 1.5, CI = 1.3-1.6) was the only baseline covariate associated with increased odds of successful referral. CONCLUSION: Findings suggest that providing MMT within detoxification centers promotes successful referral of heroin addicts to community-based MMT upon their release.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
BACKGROUND: Recent studies have found low-normal potassium (K) to be associated with increased diabetes risk. We sought to verify these associations in a multi-ethnic US cohort; and to determine if these associations extend to US Hispanics and Asian-Americans. METHODS: We analyzed data from Multi-Ethnic Study of Atherosclerosis (MESA) participants who were free-of-diabetes at baseline. We examined cross-sectional associations between measures of K-serum, dietary, and urine-with fasting glucose and HOMA-IR. We examined longitudinal associations between K and diabetes risk over 8 years. FINDINGS: In multivariable models, compared to those with higher serum K (≥4.5mmol/L), those with lower serum K (<4.0mmol/L) had significantly higher fasting glucose [1.3 mg/dL (95%CI 0.2, 2.4), P-value = 0.03]. Incident diabetes developed in 1281 of 5415 at-risk participants. In minimally-adjusted models, we found inverse associations between serum and dietary K and diabetes risk. Compared to those with higher serum K, those with lower serum K had an HR (95% CI) of incident diabetes of 1.23 (1.04, 1.47), P-value = 0.02. However, these associations were attenuated in fully-adjusted models. We found no significant interaction between potassium and ethnicity. CONCLUSIONS: In this multi-ethnic cohort, we found a significant inverse association between serum K and fasting glucose but no significant association with longer-term diabetes risk. This inverse association between potassium and glucose must be studied further to understand the physiology and its potential impact on chronic health.