3 resultados para Mu Us sandy land
em Duke University
Resumo:
Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization.
Resumo:
There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. However, very little is known about the abundance and origin of this aerosol fraction. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facility near Chapel Hill, NC, during January and June of 2007. A novel on-line instrument was used, which is based on the Steam Jet Aerosol Collector (SJAC) coupled to an on-line total carbon/total nitrogen analyzer and two on-line ion chromatographs. The concentration of ON was determined by tracking the difference in concentrations of total nitrogen and of inorganic nitrogen (determined as the sum of N-ammonium and N-nitrate). The time resolution of the instrument was 30 min with a detection limit for major aerosol components of ∼0.1 mu;gm-3. Nitrogen in organic compounds contributed ∼33% on average to the total nitrogen concentration in PM2.5, illustrating the importance of this aerosol component. Absolute concentrations of ON, however, were relatively low (lt;1.0 mu;gm-3) with an average of 0.16 mu;gm-3. The absolute and relative contribution of ON to the total aerosol nitrogen budget was practically the same in January and June. In January, the concentration of ON tended to be higher during the night and early morning, while in June it tended to be higher during the late afternoon and evening. Back-trajectories and correlation with wind direction indicate that higher concentrations of ON occur in air masses originating over the continental US, while marine air masses are characterized by lower ON concentrations. The data presented in this study suggests that ON has a variety of sources, which are very difficult to quantify without information on chemical composition of this important aerosol fraction.
Resumo:
Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.