3 resultados para Monitoring methods

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Sensor-augmented pump therapy (SAPT) integrates real-time continuous glucose monitoring (RT-CGM) with continuous subcutaneous insulin infusion (CSII) and offers an alternative to multiple daily injections (MDI). Previous studies provide evidence that SAPT may improve clinical outcomes among people with type 1 diabetes. Sensor-Augmented Pump Therapy for A1c Reduction (STAR) 3 is a multicenter randomized controlled trial comparing the efficacy of SAPT to that of MDI in subjects with type 1 diabetes. METHODS: Subjects were randomized to either continue with MDI or transition to SAPT for 1 year. Subjects in the MDI cohort were allowed to transition to SAPT for 6 months after completion of the study. SAPT subjects who completed the study were also allowed to continue for 6 months. The primary end point was the difference between treatment groups in change in hemoglobin A1c (HbA1c) percentage from baseline to 1 year of treatment. Secondary end points included percentage of subjects with HbA1c < or =7% and without severe hypoglycemia, as well as area under the curve of time spent in normal glycemic ranges. Tertiary end points include percentage of subjects with HbA1c < or =7%, key safety end points, user satisfaction, and responses on standardized assessments. RESULTS: A total of 495 subjects were enrolled, and the baseline characteristics similar between the SAPT and MDI groups. Study completion is anticipated in June 2010. CONCLUSIONS: Results of this randomized controlled trial should help establish whether an integrated RT-CGM and CSII system benefits patients with type 1 diabetes more than MDI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Adherence to glaucoma medications is essential for successful treatment of the disease but is complex and difficult for many of our patients. Health coaching has been used successfully in the treatment of other chronic diseases. This pilot study explores the use of health coaching for glaucoma care. METHODS: A mixed methods study design was used to assess the health coaching intervention for glaucoma patients. The health coaching intervention consisted of four to six health coaching sessions with a certified health coach via telephone. Quantitative measures included demographic and health information, adherence to glaucoma medications (using the visual analog adherence scale and medication event monitoring system), and an exit survey rating the experience. Qualitative measures included a precoaching health questionnaire, notes made by the coach during the intervention, and an exit interview with the subjects at the end of the study. RESULTS: Four glaucoma patients participated in the study; all derived benefits from the health coaching. Study subjects demonstrated increased glaucoma drop adherence in response to the coaching intervention, in both visual analog scale and medication event monitoring system. Study subjects' qualitative feedback reflected a perceived improvement in both eye and general health self-care. The subjects stated that they would recommend health coaching to friends or family members. CONCLUSION: Health coaching was helpful to the glaucoma patients in this study; it has the potential to improve glaucoma care and overall health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human motion monitoring is an important function in numerous applications. In this dissertation, two systems for monitoring motions of multiple human targets in wide-area indoor environments are discussed, both of which use radio frequency (RF) signals to detect, localize, and classify different types of human motion. In the first system, a coherent monostatic multiple-input multiple-output (MIMO) array is used, and a joint spatial-temporal adaptive processing method is developed to resolve micro-Doppler signatures at each location in a wide-area for motion mapping. The downranges are obtained by estimating time-delays from the targets, and the crossranges are obtained by coherently filtering array spatial signals. Motion classification is then applied to each target based on micro-Doppler analysis. In the second system, multiple noncoherent multistatic transmitters (Tx's) and receivers (Rx's) are distributed in a wide-area, and motion mapping is achieved by noncoherently combining bistatic range profiles from multiple Tx-Rx pairs. Also, motion classification is applied to each target by noncoherently combining bistatic micro-Doppler signatures from multiple Tx-Rx pairs. For both systems, simulation and real data results are shown to demonstrate the ability of the proposed methods for monitoring patient repositioning activities for pressure ulcer prevention.