4 resultados para Moduli spaces
em Duke University
Resumo:
Every closed, oriented, real analytic Riemannian 3-manifold can be isometrically embedded as a special Lagrangian submanifold of a Calabi-Yau 3-fold, even as the real locus of an antiholomorphic, isometric involution. Every closed, oriented, real analytic Riemannian 4-manifold whose bundle of self-dual 2-forms is trivial can be isometrically embedded as a coassociative submanifold in a G_2-manifold, even as the fixed locus of an anti-G_2 involution. These results, when coupled with McLean's analysis of the moduli spaces of such calibrated submanifolds, yield a plentiful supply of examples of compact calibrated submanifolds with nontrivial deformation spaces.
Resumo:
“Spaces of Order” argues that the African novel should be studied as a revolutionary form characterized by aesthetic innovations that are not comprehensible in terms of the novel’s European archive of forms. It does this by mapping an African spatial order that undermines the spatial problematic at the formal and ideological core of the novel—the split between a private, subjective interior, and an abstract, impersonal outside. The project opens with an examination of spatial fragmentation as figured in the “endless forest” of Amos Tutuola’s The Palmwine Drinkard (1952). The second chapter studies Chinua Achebe’s Things Fall Apart (1958) as a fictional world built around a peculiar category of space, the “evil forest,” which constitutes an African principle of order and modality of power. Chapter three returns to Tutuola via Ben Okri’s The Famished Road (1991) and shows how the dispersal of fragmentary spaces of exclusion and terror within the colonial African city helps us conceive of political imaginaries outside the nation and other forms of liberal political communities. The fourth chapter shows Nnedi Okorafor—in her 2014 science-fiction novel Lagoon—rewriting Things Fall Apart as an alien-encounter narrative in which Africa is center-stage of a planetary, multi-species drama. Spaces of Order is a study of the African novel as a new logic of world making altogether.
Resumo:
In this thesis we study aspects of (0,2) superconformal field theories (SCFTs), which are suitable for compactification of the heterotic string. In the first part, we study a class of (2,2) SCFTs obtained by fibering a Landau-Ginzburg (LG) orbifold CFT over a compact K\"ahler base manifold. While such models are naturally obtained as phases in a gauged linear sigma model (GLSM), our construction is independent of such an embedding. We discuss the general properties of such theories and present a technique to study the massless spectrum of the associated heterotic compactification. We test the validity of our method by applying it to hybrid phases of GLSMs and comparing spectra among the phases. In the second part, we turn to the study of the role of accidental symmetries in two-dimensional (0,2) SCFTs obtained by RG flow from (0,2) LG theories. These accidental symmetries are ubiquitous, and, unlike in the case of (2,2) theories, their identification is key to correctly identifying the IR fixed point and its properties. We develop a number of tools that help to identify such accidental symmetries in the context of (0,2) LG models and provide a conjecture for a toric structure of the SCFT moduli space in a large class of models. In the final part, we study the stability of heterotic compactifications described by (0,2) GLSMs with respect to worldsheet instanton corrections to the space-time superpotential following the work of Beasley and Witten. We show that generic models elude the vanishing theorem proved there, and may not determine supersymmetric heterotic vacua. We then construct a subclass of GLSMs for which a vanishing theorem holds.
Resumo:
The central idea of this dissertation is to interpret certain invariants constructed from Laplace spectral data on a compact Riemannian manifold as regularized integrals of closed differential forms on the space of Riemannian metrics, or more generally on a space of metrics on a vector bundle. We apply this idea to both the Ray-Singer analytic torsion
and the eta invariant, explaining their dependence on the metric used to define them with a Stokes' theorem argument. We also introduce analytic multi-torsion, a generalization of analytic torsion, in the context of certain manifolds with local product structure; we prove that it is metric independent in a suitable sense.