3 resultados para Models performance
em Duke University
Resumo:
An abstract of a thesis devoted to using helix-coil models to study unfolded states.\\
Research on polypeptide unfolded states has received much more attention in the last decade or so than it has in the past. Unfolded states are thought to be implicated in various
misfolding diseases and likely play crucial roles in protein folding equilibria and folding rates. Structural characterization of unfolded states has proven to be
much more difficult than the now well established practice of determining the structures of folded proteins. This is largely because many core assumptions underlying
folded structure determination methods are invalid for unfolded states. This has led to a dearth of knowledge concerning the nature of unfolded state conformational
distributions. While many aspects of unfolded state structure are not well known, there does exist a significant body of work stretching back half a century that
has been focused on structural characterization of marginally stable polypeptide systems. This body of work represents an extensive collection of experimental
data and biophysical models associated with describing helix-coil equilibria in polypeptide systems. Much of the work on unfolded states in the last decade has not been devoted
specifically to the improvement of our understanding of helix-coil equilibria, which arguably is the most well characterized of the various conformational equilibria
that likely contribute to unfolded state conformational distributions. This thesis seeks to provide a deeper investigation of helix-coil equilibria using modern
statistical data analysis and biophysical modeling techniques. The studies contained within seek to provide deeper insights and new perspectives on what we presumably
know very well about protein unfolded states. \\
Chapter 1 gives an overview of recent and historical work on studying protein unfolded states. The study of helix-coil equilibria is placed in the context
of the general field of unfolded state research and the basics of helix-coil models are introduced.\\
Chapter 2 introduces the newest incarnation of a sophisticated helix-coil model. State of the art modern statistical techniques are employed to estimate the energies
of various physical interactions that serve to influence helix-coil equilibria. A new Bayesian model selection approach is utilized to test many long-standing
hypotheses concerning the physical nature of the helix-coil transition. Some assumptions made in previous models are shown to be invalid and the new model
exhibits greatly improved predictive performance relative to its predecessor. \\
Chapter 3 introduces a new statistical model that can be used to interpret amide exchange measurements. As amide exchange can serve as a probe for residue-specific
properties of helix-coil ensembles, the new model provides a novel and robust method to use these types of measurements to characterize helix-coil ensembles experimentally
and test the position-specific predictions of helix-coil models. The statistical model is shown to perform exceedingly better than the most commonly used
method for interpreting amide exchange data. The estimates of the model obtained from amide exchange measurements on an example helical peptide
also show a remarkable consistency with the predictions of the helix-coil model. \\
Chapter 4 involves a study of helix-coil ensembles through the enumeration of helix-coil configurations. Aside from providing new insights into helix-coil ensembles,
this chapter also introduces a new method by which helix-coil models can be extended to calculate new types of observables. Future work on this approach could potentially
allow helix-coil models to move into use domains that were previously inaccessible and reserved for other types of unfolded state models that were introduced in chapter 1.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.
Resumo:
The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.
The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.
We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.
Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.