5 resultados para Model development guidelines
em Duke University
Resumo:
The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.
The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.
We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.
Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.
Resumo:
A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in beta-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.
Resumo:
Depletional strategies directed toward achieving tolerance induction in organ transplantation have been associated with an increased incidence and risk of antibody-mediated rejection (AMR) and graft injury. Our clinical data suggest correlation of increased serum B cell activating factor/survival factor (BAFF) with increased risk of antibody-mediated rejection in alemtuzumab treated patients. In the present study, we tested the ability of BAFF blockade (TACI-Ig) in a nonhuman primate AMR model to prevent alloantibody production and prolong allograft survival. Three animals received the AMR inducing regimen (CD3-IT/alefacept/tacrolimus) with TACI-Ig (atacicept), compared to five control animals treated with the AMR inducing regimen only. TACI-Ig treatment lead to decreased levels of DSA in treated animals at 2 and 4 weeks posttransplantation (p < 0.05). In addition, peripheral B cell numbers were significantly lower at 6 weeks posttransplantation. However, it provided only a marginal increase in graft survival (59 ± 22 vs. 102 ± 47 days; p = 0.11). Histological analysis revealed a substantial reduction in findings typically associated with humoral rejection with atacicept treatment. More T cell rejection findings were observed with increased graft T cell infiltration in atacicept treatment, likely secondary to the graft prolongation. We show that BAFF/APRIL blockade using concomitant TACI-Ig treatment reduced the humoral portion of rejection in our depletion-induced preclinical AMR model.
Resumo:
Software-based control of life-critical embedded systems has become increasingly complex, and to a large extent has come to determine the safety of the human being. For example, implantable cardiac pacemakers have over 80,000 lines of code which are responsible for maintaining the heart within safe operating limits. As firmware-related recalls accounted for over 41% of the 600,000 devices recalled in the last decade, there is a need for rigorous model-driven design tools to generate verified code from verified software models. To this effect, we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of verified models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We describe the translation rules that ensure correct model conversion, applicable to a large class of models. We demonstrate how UPP2SF is used in themodel-driven design of a pacemaker whosemodel is (a) designed and verified in UPPAAL (using timed automata), (b) automatically translated to Stateflow for simulation-based testing, and then (c) automatically generated into modular code for hardware-level integration testing of timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estimation early in the design stage. Using UPP2SF, we demonstrate the value of integrated end-to-end modeling, verification, code-generation and testing process for complex software-controlled embedded systems. © 2014 ACM.