3 resultados para Mode lock
em Duke University
Resumo:
It has long been recognized that whistler-mode waves can be trapped in plasmaspheric whistler ducts which guide the waves. For nonguided cases these waves are said to be "nonducted", which is dominant for L < 1.6. Wave-particle interactions are affected by the wave being ducted or nonducted. In the field-aligned ducted case, first-order cyclotron resonance is dominant, whereas nonducted interactions open up a much wider range of energies through equatorial and off-equatorial resonance. There is conflicting information as to whether the most significant particle loss processes are driven by ducted or nonducted waves. In this study we use loss cone observations from the DEMETER and POES low-altitude satellites to focus on electron losses driven by powerful VLF communications transmitters. Both satellites confirm that there are well-defined enhancements in the flux of electrons in the drift loss cone due to ducted transmissions from the powerful transmitter with call sign NWC. Typically, ∼80% of DEMETER nighttime orbits to the east of NWC show electron flux enhancements in the drift loss cone, spanning a L range consistent with first-order cyclotron theory, and inconsistent with nonducted resonances. In contrast, ∼1% or less of nonducted transmissions originate from NPM-generated electron flux enhancements. While the waves originating from these two transmitters have been predicted to lead to similar levels of pitch angle scattering, we find that the enhancements from NPM are at least 50 times smaller than those from NWC. This suggests that lower-latitude, nonducted VLF waves are much less effective in driving radiation belt pitch angle scattering. Copyright 2010 by the American Geophysical Union.
Resumo:
Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided. Copyright © American Association for Aerosol Research.