3 resultados para Minkowski metrics
em Duke University
Resumo:
I discuss geometry and normal forms for pseudo-Riemannian metrics with parallel spinor fields in some interesting dimensions. I also discuss the interaction of these conditions for parallel spinor fields with the condition that the Ricci tensor vanish (which, for pseudo-Riemannian manifolds, is not an automatic consequence of the existence of a nontrivial parallel spinor field).
Resumo:
The central idea of this dissertation is to interpret certain invariants constructed from Laplace spectral data on a compact Riemannian manifold as regularized integrals of closed differential forms on the space of Riemannian metrics, or more generally on a space of metrics on a vector bundle. We apply this idea to both the Ray-Singer analytic torsion
and the eta invariant, explaining their dependence on the metric used to define them with a Stokes' theorem argument. We also introduce analytic multi-torsion, a generalization of analytic torsion, in the context of certain manifolds with local product structure; we prove that it is metric independent in a suitable sense.