4 resultados para Minimum Variance Model

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers forecasting the conditional mean and variance from a single-equation dynamic model with autocorrelated disturbances following an ARMA process, and innovations with time-dependent conditional heteroskedasticity as represented by a linear GARCH process. Expressions for the minimum MSE predictor and the conditional MSE are presented. We also derive the formula for all the theoretical moments of the prediction error distribution from a general dynamic model with GARCH(1, 1) innovations. These results are then used in the construction of ex ante prediction confidence intervals by means of the Cornish-Fisher asymptotic expansion. An empirical example relating to the uncertainty of the expected depreciation of foreign exchange rates illustrates the usefulness of the results. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and proliferation of invasive bacteria in engineered systems is an ongoing problem. While there are a variety of physical and chemical processes to remove and inactivate bacterial pathogens, there are many situations in which these tools are no longer effective or appropriate for the treatment of a microbial target. For example, certain strains of bacteria are becoming resistant to commonly used disinfectants, such as chlorine and UV. Additionally, the overuse of antibiotics has contributed to the spread of antibiotic resistance, and there is concern that wastewater treatment processes are contributing to the spread of antibiotic resistant bacteria.

Due to the continually evolving nature of bacteria, it is difficult to develop methods for universal bacterial control in a wide range of engineered systems, as many of our treatment processes are static in nature. Still, invasive bacteria are present in many natural and engineered systems, where the application of broad acting disinfectants is impractical, because their use may inhibit the original desired bioprocesses. Therefore, to better control the growth of treatment resistant bacteria and to address limitations with the current disinfection processes, novel tools that are both specific and adaptable need to be developed and characterized.

In this dissertation, two possible biological disinfection processes were investigated for use in controlling invasive bacteria in engineered systems. First, antisense gene silencing, which is the specific use of oligonucleotides to silence gene expression, was investigated. This work was followed by the investigation of bacteriophages (phages), which are viruses that are specific to bacteria, in engineered systems.


For the antisense gene silencing work, a computational approach was used to quantify the number of off-targets and to determine the effects of off-targets in prokaryotic organisms. For the organisms of Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv the mean number of off-targets was found to be 15.0 + 13.2 and 38.2 + 61.4, respectively, which results in a reduction of greater than 90% of the effective oligonucleotide concentration. It was also demonstrated that there was a high variability in the number of off-targets over the length of a gene, but that on average, there was no general gene location that could be targeted to reduce off-targets. Therefore, this analysis needs to be performed for each gene in question. It was also demonstrated that the thermodynamic binding energy between the oligonucleotide and the mRNA accounted for 83% of the variation in the silencing efficiency, compared to the number of off-targets, which explained 43% of the variance of the silencing efficiency. This suggests that optimizing thermodynamic parameters must be prioritized over minimizing the number of off-targets. In conclusion for the antisense work, these results suggest that off-target hybrids can account for a greater than 90% reduction in the concentration of the silencing oligonucleotides, and that the effective concentration can be increased through the rational design of silencing targets by minimizing off-target hybrids.

Regarding the work with phages, the disinfection rates of bacteria in the presence of phages was determined. The disinfection rates of E. coli K12 MG1655 in the presence of coliphage Ec2 ranged up to 2 h-1, and were dependent on both the initial phage and bacterial concentrations. Increasing initial phage concentrations resulted in increasing disinfection rates, and generally, increasing initial bacterial concentrations resulted in increasing disinfection rates. However, disinfection rates were found to plateau at higher bacterial and phage concentrations. A multiple linear regression model was used to predict the disinfection rates as a function of the initial phage and bacterial concentrations, and this model was able to explain 93% of the variance in the disinfection rates. The disinfection rates were also modeled with a particle aggregation model. The results from these model simulations suggested that at lower phage and bacterial concentrations there are not enough collisions to support active disinfection rates, which therefore, limits the conditions and systems where phage based bacterial disinfection is possible. Additionally, the particle aggregation model over predicted the disinfection rates at higher phage and bacterial concentrations of 108 PFU/mL and 108 CFU/mL, suggesting other interactions were occurring at these higher concentrations. Overall, this work highlights the need for the development of alternative models to more accurately describe the dynamics of this system at a variety of phage and bacterial concentrations. Finally, the minimum required hydraulic residence time was calculated for a continuous stirred-tank reactor and a plug flow reactor (PFR) as a function of both the initial phage and bacterial concentrations, which suggested that phage treatment in a PFR is theoretically possible.

In addition to determining disinfection rates, the long-term bacterial growth inhibition potential was determined for a variety of phages with both Gram-negative and Gram-positive bacteria. It was determined, that on average, phages can be used to inhibit bacterial growth for up to 24 h, and that this effect was concentration dependent for various phages at specific time points. Additionally, it was found that a phage cocktail was no more effective at inhibiting bacterial growth over the long-term than the best performing phage in isolation.

Finally, for an industrial application, the use of phages to inhibit invasive Lactobacilli in ethanol fermentations was investigated. It was demonstrated that phage 8014-B2 can achieve a greater than 3-log inactivation of Lactobacillus plantarum during a 48 h fermentation. Additionally, it was shown that phages can be used to protect final product yields and maintain yeast viability. Through modeling the fermentation system with differential equations it was determined that there was a 10 h window in the beginning of the fermentation run, where the addition of phages can be used to protect final product yields, and after 20 h no additional benefit of the phage addition was observed.

In conclusion, this dissertation improved the current methods for designing antisense gene silencing targets for prokaryotic organisms, and characterized phages from an engineering perspective. First, the current design strategy for antisense targets in prokaryotic organisms was improved through the development of an algorithm that minimized the number of off-targets. For the phage work, a framework was developed to predict the disinfection rates in terms of the initial phage and bacterial concentrations. In addition, the long-term bacterial growth inhibition potential of multiple phages was determined for several bacteria. In regard to the phage application, phages were shown to protect both final product yields and yeast concentrations during fermentation. Taken together, this work suggests that the rational design of phage treatment is possible and further work is needed to expand on this foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the increases in spatial resolution and other improvements in climate modeling capabilities over the last decade since the CMIP3 simulations were completed, CMIP5 provides a unique opportunity to assess scientific understanding of climate variability and change over a range of historical and future conditions. With participation from over 20 modeling groups and more than 40 global models, CMIP5 represents the latest and most ambitious coordinated international climate model intercomparison exercise to date. Observations dating back to 1900 show that the temperatures in the twenty-first century have the largest spatial extent of record breaking and much above normal mean monthly maximum and minimum temperatures. The 20-yr return value of the annual maximum or minimum daily temperature is one measure of changes in rare temperature extremes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.The frequency and severity of extreme events are tightly associated with the variance of precipitation. As climate warms, the acceleration in hydrological cycle is likely to enhance the variance of precipitation across the globe. However, due to the lack of an effective analysis method, the mechanisms responsible for the changes of precipitation variance are poorly understood, especially on regional scales. Our study fills this gap by formulating a variance partition algorithm, which explicitly quantifies the contributions of atmospheric thermodynamics (specific humidity) and dynamics (wind) to the changes in regional-scale precipitation variance. Taking Southeastern (SE) United States (US) summer precipitation as an example, the algorithm is applied to the simulations of current and future climate by phase 5 of Coupled Model Intercomparison Project (CMIP5) models. The analysis suggests that compared to observations, most CMIP5 models (~60 %) tend to underestimate the summer precipitation variance over the SE US during the 1950–1999, primarily due to the errors in the modeled dynamic processes (i.e. large-scale circulation). Among the 18 CMIP5 models analyzed in this study, six of them reasonably simulate SE US summer precipitation variance in the twentieth century and the underlying physical processes; these models are thus applied for mechanistic study of future changes in SE US summer precipitation variance. In the future, the six models collectively project an intensification of SE US summer precipitation variance, resulting from the combined effects of atmospheric thermodynamics and dynamics. Between them, the latter plays a more important role. Specifically, thermodynamics results in more frequent and intensified wet summers, but does not contribute to the projected increase in the frequency and intensity of dry summers. In contrast, atmospheric dynamics explains the projected enhancement in both wet and dry summers, indicating its importance in understanding future climate change over the SE US. The results suggest that the intensified SE US summer precipitation variance is not a purely thermodynamic response to greenhouse gases forcing, and cannot be explained without the contribution of atmospheric dynamics. Our analysis provides important insights to understand the mechanisms of SE US summer precipitation variance change. The algorithm formulated in this study can be easily applied to other regions and seasons to systematically explore the mechanisms responsible for the changes in precipitation extremes in a warming climate.