3 resultados para Mineral investment

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Does environmental regulation impair international competitiveness of pollution-intensive industries to the extent that they relocate to countries with less stringent regulation, turning those countries into "pollution havens"? We test this hypothesis using panel data on outward foreign direct investment (FDI) flows of various industries in the German manufacturing sector and account for several econometric issues that have been ignored in previous studies. Most importantly, we demonstrate that externalities associated with FDI agglomeration can bias estimates away from finding a pollution haven effect if omitted from the analysis. We include the stock of inward FDI as a proxy for agglomeration and employ a GMM estimator to control for endogenous time-varying determinants of FDI flows. Furthermore, we propose a difference estimator based on the least polluting industry to break the possible correlation between environmental regulatory stringency and unobservable attributes of FDI recipients in the cross-section. When accounting for these issues we find robust evidence of a pollution haven effect for the chemical industry. © 2008 Springer Science+Business Media B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large portion of foreign assistance for climate change mitigation in developing countries is directed to clean energy facilities. To support international mitigation goals, however, donors must make investments that have effects beyond individual facilities. They must reduce barriers to private-sector investment by generating information for developers, improving relevant infrastructure, or changing policies. We examine whether donor agencies target financing for commercial-scale wind and solar facilities to countries where private investment in clean energy is limited and whether donor investments lead to more private investments. On average, we find no positive evidence for these patterns of targeting and impact. Coupled with model results that show feed-in tariffs increase private investment, we argue that donor agencies should reallocate resources to improve policies that promote private investment in developing countries, rather than finance individual clean energy facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 Elsevier B.V.Calcarenites are highly porous soft rocks formed of mainly carbonate grains bonded together by calcite bridges. The above characteristics make them prone to water-induced weathering, frequently featuring large caverns and inland natural underground cavities. This study is aimed to determine the main physical processes at the base of the short- and long-term weakening experienced by these rocks when interacting with water. We present the results of microscale experimental investigations performed on calcarenites from four different sites in Southern Italy. SEM, thin sections, X-ray CT observations and related analyses are used for both the interpretation-definition of the structure changes, and the identification-quantification of the degradation mechanisms. Two distinct types of bonding have been identified within the rock: temporary bonding (TB) and persistent bonding (PB). The diverse mechanisms linked to these two types of bonding explain both the observed fast decrease in rock strength when water fills the pores (short-term effect of water), identified with a short-term debonding (STD), and a long-term weakening of the material, when the latter is persistently kept in water-saturated conditions (long-term effect of water), identified with a long-term debonding (LTD). To highlight the micro-hydro-chemo-mechanical processes of formation and annihilation of the TB bonds and their role in the evolution of the mechanical strength of the material, mechanical tests on samples prepared by drying partially saturated calcarenite powder, or a mix of glass ballotini and calcarenite powder were conducted. The long-term debonding processes have also been investigated, using acid solutions in order to accelerate the reaction rates. This paper attempts to identify and quantify differences between the two types of bonds and the relative micro-scale debonding processes leading to the macro-scale material weakening mechanisms.