2 resultados para Microbial carbon
em Duke University
Resumo:
The long-term soil carbon dynamics may be approximated by networks of linear compartments, permitting theoretical analysis of transit time (i.e., the total time spent by a molecule in the system) and age (the time elapsed since the molecule entered the system) distributions. We compute and compare these distributions for different network. configurations, ranging from the simple individual compartment, to series and parallel linear compartments, feedback systems, and models assuming a continuous distribution of decay constants. We also derive the transit time and age distributions of some complex, widely used soil carbon models (the compartmental models CENTURY and Rothamsted, and the continuous-quality Q-Model), and discuss them in the context of long-term carbon sequestration in soils. We show how complex models including feedback loops and slow compartments have distributions with heavier tails than simpler models. Power law tails emerge when using continuous-quality models, indicating long retention times for an important fraction of soil carbon. The responsiveness of the soil system to changes in decay constants due to altered climatic conditions or plant species composition is found to be stronger when all compartments respond equally to the environmental change, and when the slower compartments are more sensitive than the faster ones or lose more carbon through microbial respiration. Copyright 2009 by the American Geophysical Union.
Resumo:
The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Saccharomyces cerevisiae ilv2Delta mutants do not survive in vivo, Cryptococcus neoformans ilv2 mutants are avirulent, and both S. cerevisiae and Cr. neoformans ilv2 mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted Candida albicans ILV2, and demonstrated that Ca. albicans ilv2Delta mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both S. cerevisiae and Ca. albicans ilv2Delta mutants. Since the mutation of ILV1, required for the first step of isoleucine biosynthesis, did not suppress the ilv2Delta starvation-cidal defects in either species, the cidal phenotype was not due to alpha-ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in Ca. albicans than in S. cerevisiae, and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced S. cerevisiae ilv2Delta starvation viability, it increased Ca. albicans ilv1Delta and ilv2Delta viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for S. cerevisiae ilv2Delta mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Ca. albicans ilv1Delta and ilv2 Delta viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the Ca. albicans cidal phenotype.