8 resultados para Methicillin-resistant Staphylococcus Aureus
em Duke University
Resumo:
BACKGROUND: Hand hygiene noncompliance is a major cause of nosocomial infection. Nosocomial infection cost data exist, but the effect of hand hygiene noncompliance is unknown. OBJECTIVE: To estimate methicillin-resistant Staphylococcus aureus (MRSA)-related cost of an incident of hand hygiene noncompliance by a healthcare worker during patient care. DESIGN: Two models were created to simulate sequential patient contacts by a hand hygiene-noncompliant healthcare worker. Model 1 involved encounters with patients of unknown MRSA status. Model 2 involved an encounter with an MRSA-colonized patient followed by an encounter with a patient of unknown MRSA status. The probability of new MRSA infection for the second patient was calculated using published data. A simulation of 1 million noncompliant events was performed. Total costs of resulting infections were aggregated and amortized over all events. SETTING: Duke University Medical Center, a 750-bed tertiary medical center in Durham, North Carolina. RESULTS: Model 1 was associated with 42 MRSA infections (infection rate, 0.0042%). Mean infection cost was $47,092 (95% confidence interval [CI], $26,040-$68,146); mean cost per noncompliant event was $1.98 (95% CI, $0.91-$3.04). Model 2 was associated with 980 MRSA infections (0.098%). Mean infection cost was $53,598 (95% CI, $50,098-$57,097); mean cost per noncompliant event was $52.53 (95% CI, $47.73-$57.32). A 200-bed hospital incurs $1,779,283 in annual MRSA infection-related expenses attributable to hand hygiene noncompliance. A 1.0% increase in hand hygiene compliance resulted in annual savings of $39,650 to a 200-bed hospital. CONCLUSIONS: Hand hygiene noncompliance is associated with significant attributable hospital costs. Minimal improvements in compliance lead to substantial savings.
Resumo:
OBJECTIVE: To determine the epidemiological characteristics of postoperative invasive Staphylococcus aureus infection following 4 types of major surgical procedures.design. Retrospective cohort study. SETTING: Eleven hospitals (9 community hospitals and 2 tertiary care hospitals) in North Carolina and Virginia. PATIENTS: Adults undergoing orthopedic, neurosurgical, cardiothoracic, and plastic surgical procedures. METHODS: We used previously validated, prospectively collected surgical surveillance data for surgical site infection and microbiological data for bloodstream infection. The study period was 2003 through 2006. We defined invasive S. aureus infection as either nonsuperficial incisional surgical site infection or bloodstream infection. Nonparametric bootstrapping was used to generate 95% confidence intervals (CIs). P values were generated using the Pearson chi2 test, Student t test, or Wilcoxon rank-sum test, as appropriate. RESULTS: In total, 81,267 patients underwent 96,455 procedures during the study period. The overall incidence of invasive S. aureus infection was 0.47 infections per 100 procedures (95% CI, 0.43-0.52); 227 (51%) of 446 infections were due to methicillin-resistant S.aureus. Invasive S. aureus infection was more common after cardiothoracic procedures (incidence, 0.79 infections per 100 procedures [95%CI, 0.62-0.97]) than after orthopedic procedures (0.37 infections per 100 procedures [95% CI, 0.32-0.42]), neurosurgical procedures (0.62 infections per 100 procedures [95% CI, 0.53-0.72]), or plastic surgical procedures (0.32 infections per 100 procedures [95% CI, 0.17-0.47]) (P < .001). Similarly, S. aureus bloodstream infection was most common after cardiothoracic procedures (incidence, 0.57 infections per 100 procedures [95% CI, 0.43-0.72]; P < .001, compared with other procedure types), comprising almost three-quarters of the invasive S. aureus infections after these procedures. The highest rate of surgical site infection was observed after neurosurgical procedures (incidence, 0.50 infections per 100 procedures [95% CI, 0.42-0.59]; P < .001, compared with other procedure types), comprising 80% of invasive S.aureus infections after these procedures. CONCLUSION: The frequency and type of postoperative invasive S. aureus infection varied significantly across procedure types. The highest risk procedures, such as cardiothoracic procedures, should be targeted for ongoing preventative interventions.
Resumo:
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of complicated skin and skin-structure infection (cSSSI). Increasing antimicrobial resistance in cSSSI has led to a need for new safe and effective therapies. Ceftaroline was evaluated as treatment for cSSSI in 2 identical phase 3 clinical trials, the pooled analysis of which is presented here. The primary objective of each trial was to determine the noninferiority of the clinical cure rate achieved with ceftaroline monotherapy, compared with that achieved with vancomycin plus aztreonam combination therapy, in the clinically evaluable (CE) and modified intent-to-treat (MITT) patient populations. METHODS: Adult patients with cSSSI requiring intravenous therapy received ceftaroline (600 mg every 12 h) or vancomycin plus aztreonam (1 g each every 12 h) for 5-14 days. RESULTS: Of 1378 patients enrolled in both trials, 693 received ceftaroline and 685 received vancomycin plus aztreonam. Baseline characteristics of the treatment groups were comparable. Clinical cure rates were similar for ceftaroline and vancomycin plus aztreonam in the CE (91.6% vs 92.7%) and MITT (85.9% vs 85.5%) populations, respectively, as well as in patients infected with MRSA (93.4% vs 94.3%). The rates of adverse events, discontinuations because of an adverse event, serious adverse events, and death also were similar between treatment groups. CONCLUSIONS: Ceftaroline achieved high clinical cure rates, was efficacious against cSSSI caused by MRSA and other common cSSSI pathogens, and was well tolerated, with a safety profile consistent with the cephalosporin class. Ceftaroline has the potential to provide a monotherapy alternative for the treatment of cSSSI. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT00424190 for CANVAS 1 and NCT00423657 for CANVAS 2.
Resumo:
Using A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus -infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection.
Resumo:
Bacterial cell-wall-associated fibronectin binding proteins A and B (FnBPA and FnBPB) form bonds with host fibronectin. This binding reaction is often the initial step in prosthetic device infections. Atomic force microscopy was used to evaluate binding interactions between a fibronectin-coated probe and laboratory-derived Staphylococcus aureus that are (i) defective in both FnBPA and FnBPB (fnbA fnbB double mutant, DU5883), (ii) capable of expressing only FnBPA (fnbA fnbB double mutant complemented with pFNBA4), or (iii) capable of expressing only FnBPB (fnbA fnbB double mutant complemented with pFNBB4). These experiments were repeated using Lactococcus lactis constructs expressing fnbA and fnbB genes from S. aureus. A distinct force signature was observed for those bacteria that expressed FnBPA or FnBPB. Analysis of this force signature with the biomechanical wormlike chain model suggests that parallel bonds form between fibronectin and FnBPs on a bacterium. The strength and covalence of bonds were evaluated via nonlinear regression of force profiles. Binding events were more frequent (p < 0.01) for S. aureus expressing FnBPA or FnBPB than for the S. aureus double mutant. The binding force, frequency, and profile were similar between the FnBPA and FnBPB expressing strains of S. aureus. The absence of both FnBPs from the surface of S. aureus removed its ability to form a detectable bond with fibronectin. By contrast, ectopic expression of FnBPA or FnBPB on the surface of L. lactis conferred fibronectin binding characteristics similar to those of S. aureus. These measurements demonstrate that fibronectin-binding adhesins FnBPA and FnBPB are necessary and sufficient for the binding of S. aureus to prosthetic devices that are coated with host fibronectin.
Resumo:
Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that loci on chromosomes 8, 11, and 18 influence susceptibility to S. aureus sepsis in A/J mice. We then used two candidate gene selection strategies to identify genes on these three chromosomes associated with S. aureus susceptibility, and targeted genes identified by both gene selection strategies. First, we used whole genome transcription profiling to identify 191 (56 on chr. 8, 100 on chr. 11, and 35 on chr. 18) genes on our three chromosomes of interest that are differentially expressed between S. aureus-infected A/J and C57BL/6J. Second, we identified two significant quantitative trait loci (QTL) for survival post-infection on chr. 18 using N(2) backcross mice (F(1) [C18A]xC57BL/6J). Ten genes on chr. 18 (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTL regions and were also identified by the expression array selection strategy. Using real-time PCR, 6 of these 10 genes (Chmp1b, Dtwd2, Isoc1, Lman1, Tnfaip8, and Seh1l) showed significantly different expression levels between S. aureus-infected A/J and C57BL/6J. For two (Tnfaip8 and Seh1l) of these 6 genes, siRNA-mediated knockdown of gene expression in S. aureus-challenged RAW264.7 macrophages induced significant changes in the cytokine response (IL-1 beta and GM-CSF) compared to negative controls. These cytokine response changes were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18 mice (which contain A/J chromosome 18 but are otherwise C57BL/6J), but not C57BL/6J mice. These findings suggest that two genes, Tnfaip8 and Seh1l, may contribute to susceptibility to S. aureus in A/J mice, and represent promising candidates for human genetic susceptibility studies.
Resumo:
SUMMARY: Fracture stabilization in the diabetic patient is associated with higher complication rates, particularly infection and impaired wound healing, which can lead to major tissue damage, osteomyelitis, and higher amputation rates. With an increasing prevalence of diabetes and an aging population, the risks of infection of internal fixation devices are expected to grow. Although numerous retrospective clinical studies have identified a relationship between diabetes and infection, currently there are few animal models that have been used to investigate postoperative surgical-site infections associated with internal fixator implantation and diabetes. The authors therefore refined the protocol for inducing hyperglycemia and compared the bacterial burden in controls to pharmacologically induced type 1 diabetic rats after undergoing internal fracture plate fixation and Staphylococcus aureus surgical-site inoculation. Using an initial series of streptozotocin doses, followed by optional additional doses to reach a target blood glucose range of 300 to 600 mg/dl, the authors reliably induced diabetes in 100 percent of the rats (n = 16), in which a narrow hyperglycemic range was maintained 14 days after onset of diabetes (mean ± SEM, 466 ± 16 mg/dl; coefficient of variation, 0.15). With respect to their primary endpoint, the authors quantified a significantly higher infectious burden in inoculated diabetic animals (median, 3.2 × 10 colony-forming units/mg dry tissue) compared with inoculated nondiabetic animals (7.2 × 10 colony-forming units/mg dry tissue). These data support the authors' hypothesis that uncontrolled diabetes adversely affects the immune system's ability to clear Staphylococcus aureus associated with internal hardware.
Resumo:
Staphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2. Although informative, the previous structure was not properly folded and left many substantial questions unanswered, such as a detailed description of the tertiary structure of SpA domains in complex with Fc and the structural changes that take place upon binding. Here we report the 2.3-Å structure of a fully folded SpA domain in complex with Fc. Our structure indicates that there are extensive structural rearrangements necessary for binding Fc, including a general reduction in SpA conformational heterogeneity, freezing out of polyrotameric interfacial residues, and displacement of a SpA side chain by an Fc side chain in a molecular-recognition pocket. Such a loss of conformational heterogeneity upon formation of the protein-protein interface may occur when SpA binds its multiple binding partners. Suppression of conformational heterogeneity may be an important structural paradigm in functionally plastic proteins.