5 resultados para Methane Consumption
em Duke University
Resumo:
Three species of bamboo‐eating lemurs were found to be sympatric in the southeastern rain forests of Madagascar. Sympatric species generally differ in habitat utilization or diet, but these three closely related bamboo lemurs lived in the same habitat and all ate bamboo. Behavioral observation revealed that they did select different parts of the bamboo, and chemical analyses confirmed that there was a difference in the secondary compound content present in those selections. The growing tips of Cephalostachyum ef uiguieri selected by the golden bamboo lemur (Hapalemuraureus) contained 15 mg of cyanide per 100 g fresh weight bamboo while the leaves of C. perrieri selected by the gentle bamboo lemur (H. griseus)and the mature culms of C. cf uiguieri selected by the greater bamboolemur (H. simus) did not contain cyanide. Since each individual golden bamboo lemur ate about 500 g of bamboo per day, they daily ingestedabout 12 times the lethal dose of cyanide. The mechanism by which this small primate avoids the acute and chronic symptoms of cyanide poisioning is unknown. Copyright © 1989 Wiley‐Liss, Inc., A Wiley Company
Resumo:
Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH(4) L(-1) (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L(-1) (P < 0.05; n = 34). Average δ(13)C-CH(4) values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ(13)C-CH(4) data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ(2)H-CH(4) values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and-possibly-regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.
Resumo:
Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, and electricity. We examine the evidence and analyze modeling projections to understand how these two dynamics affect greenhouse gas emissions. Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. Modeling suggests that absent substantial policy changes, increased natural gas production slightly increases overall energy use, more substantially encourages fuel-switching, and that the combined effect slightly alters economy wide GHG emissions; whether the net effect is a slight decrease or increase depends on modeling assumptions including upstream methane emissions. Our main conclusions are that natural gas can help reduce GHG emissions, but in the absence of targeted climate policy measures, it will not substantially change the course of global GHG concentrations. Abundant natural gas can, however, help reduce the costs of achieving GHG reduction goals.
Resumo:
Retinoic acids (13-cis and 13-trans) are known teratogens, and their precursor is retinol, a form of vitamin A. In 1995, Rothman et al demonstrated an association between excessive vitamin A, >10,000 IU/day, during the first trimester of pregnancy and teratogenic effects, particularly in the central nervous system. However, vitamin A deficiency has long been known to be deleterious to the mother and fetus. Therefore, there may be a narrow therapeutic ratio for vitamin A during pregnancy that has not previously been fully appreciated. Neurodevelopmental disorders may not be apparent by macroscopic brain examination or imaging, and proving the existence of a behavioral teratogen is not straightforward. However, an excess of retinoic acid and some neurodevelopmental disorders are both associated with abnormalities in cerebellar morphology. Physical and chemical evidence strongly supports the notion that beta carotene crosses the placenta and is metabolized to retinol. Only very limited amounts of beta carotene are stored in fetal fat cells as evidenced by the fact that maternal fat is yellow from beta carotene, whereas non-brown neonatal fat is white. Furthermore, newborns of carotenemic mothers do not share the yellow complexion of their mothers. The excess 13-trans retinoic acid derived from metabolized beta carotene in the fetus increases the concentration of the more teratogenic 13-cis retinoic acid since the isomerization equilibrium is shifted to the left. Therefore, this paper proposes that consideration be given to monitoring all potential sources of fetal 13-cis and 13-trans retinoic acid, including nutritional supplements, dietary retinol, and beta carotene, particularly in the first trimester of pregnancy.
Resumo:
BACKGROUND: Illicit cigarettes comprise more than 11% of tobacco consumption and 17% of consumption in low- and middle-income countries. Illicit cigarettes, defined as those that evade taxes, lower consumer prices, threaten national tobacco control efforts, and reduce excise tax collection. METHODS: This paper measures the magnitude of illicit cigarette consumption within Indonesia using two methods: the discrepancies between legal cigarette sales and domestic consumption estimated from surveys, and discrepancies between imports recorded by Indonesia and exports recorded by trade partners. Smuggling plays a minor role in the availability of illicit cigarettes because Indonesians predominantly consume kreteks, which are primarily manufactured in Indonesia. RESULTS: Looking at the period from 1995 to 2013, illicit cigarettes first emerged in 2004. When no respondent under-reporting is assumed, illicit consumption makes up 17% of the domestic market in 2004, 9% in 2007, 11% in 2011, and 8% in 2013. Discrepancies in the trade data indicate that Indonesia was a recipient of smuggled cigarettes for each year between 1995 and 2012. The value of this illicit trade ranges from less than $1 million to nearly $50 million annually. Singapore, China, and Vietnam together accounted for nearly two-thirds of trade discrepancies over the period. Tax losses due to illicit consumption amount to between Rp 4.1 and 9.3 trillion rupiah, 4% to 13% of tobacco excise revenue, in 2011 and 2013. CONCLUSIONS: Due to the predominance of kretek consumption in Indonesia and Indonesia's status as the predominant producer of kreteks, illicit domestic production is likely the most important source for illicit cigarettes, and initiatives targeted to combat this illicit production carry the promise of the greatest potential impact.