17 resultados para Merluccius gayi peruanus Ginsburg

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Several studies have noted that genetic variants of SCARB1, a lipoprotein receptor involved in reverse cholesterol transport, are associated with serum lipid levels in a sex-dependent fashion. However, the mechanism underlying this gene by sex interaction has not been explored. METHODS: We utilized both epidemiological and molecular methods to study how estrogen and gene variants interact to influence SCARB1 expression and lipid levels. Interaction between 35 SCARB1 haplotype-tagged polymorphisms and endogenous estradiol levels was assessed in 498 postmenopausal Caucasian women from the population-based Rancho Bernardo Study. We further examined associated variants with overall and SCARB1 splice variant (SR-BI and SR-BII) expression in 91 human liver tissues using quantitative real-time PCR. RESULTS: Several variants on a haplotype block spanning intron 11 to intron 12 of SCARB1 showed significant gene by estradiol interaction affecting serum lipid levels, the strongest for rs838895 with HDL-cholesterol (p=9.2x10(-4)) and triglycerides (p=1.3x10(-3)) and the triglyceride:HDL cholesterol ratio (p=2.7x10(-4)). These same variants were associated with expression of the SR-BI isoform in a sex-specific fashion, with the strongest association found among liver tissue from 52 young women<45 years old (p=0.002). CONCLUSIONS: Estrogen and SCARB1 genotype may act synergistically to regulate expression of SCARB1 isoforms and impact serum levels of HDL cholesterol and triglycerides. This work highlights the importance of considering sex-dependent effects of gene variants on serum lipid levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA(2) activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA(2) activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA(2) activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6 x 10(-24)); CELSR2/PSRC1 on chromosome 1 (p = 3 x 10(-15)); SCARB1 on chromosome 12 (p = 1x10(-8)) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4 x 10(-8)). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA(2) mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA(2) activity and mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Previous work has demonstrated the potential for peripheral blood (PB) gene expression profiling for the detection of disease or environmental exposures. METHODS AND FINDINGS: We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy). A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100% specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90% and 81%, respectively. CONCLUSIONS: We conclude that PB gene expression profiles can be identified in mice and humans that are accurate in predicting medical conditions, are specific to each condition and remain highly accurate over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Risk assessment with a thorough family health history is recommended by numerous organizations and is now a required component of the annual physical for Medicare beneficiaries under the Affordable Care Act. However, there are several barriers to incorporating robust risk assessments into routine care. MeTree, a web-based patient-facing health risk assessment tool, was developed with the aim of overcoming these barriers. In order to better understand what factors will be instrumental for broader adoption of risk assessment programs like MeTree in clinical settings, we obtained funding to perform a type III hybrid implementation-effectiveness study in primary care clinics at five diverse healthcare systems. Here, we describe the study's protocol. METHODS/DESIGN: MeTree collects personal medical information and a three-generation family health history from patients on 98 conditions. Using algorithms built entirely from current clinical guidelines, it provides clinical decision support to providers and patients on 30 conditions. All adult patients with an upcoming well-visit appointment at one of the 20 intervention clinics are eligible to participate. Patient-oriented risk reports are provided in real time. Provider-oriented risk reports are uploaded to the electronic medical record for review at the time of the appointment. Implementation outcomes are enrollment rate of clinics, providers, and patients (enrolled vs approached) and their representativeness compared to the underlying population. Primary effectiveness outcomes are the percent of participants newly identified as being at increased risk for one of the clinical decision support conditions and the percent with appropriate risk-based screening. Secondary outcomes include percent change in those meeting goals for a healthy lifestyle (diet, exercise, and smoking). Outcomes are measured through electronic medical record data abstraction, patient surveys, and surveys/qualitative interviews of clinical staff. DISCUSSION: This study evaluates factors that are critical to successful implementation of a web-based risk assessment tool into routine clinical care in a variety of healthcare settings. The result will identify resource needs and potential barriers and solutions to implementation in each setting as well as an understanding potential effectiveness. TRIAL REGISTRATION: NCT01956773.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copyright © Taylor & Francis Group, LLC 2015.Type 2 diabetes is a major health burden in the United States, and population trends suggest this burden will increase. High interest in, and increased availability of, testing for genetic risk of type 2 diabetes presents a new opportunity for reducing type 2 diabetes risk for many patients; however, to date, there is little evidence that genetic testing positively affects type 2 diabetes prevention. Genetic information may not fit patients illness representations, which may reduce the chances of risk-reducing behavior changes. The present study aimed to examine illness representations in a clinical sample who are at risk for type 2 diabetes and interested in genetic testing. The authors used the Common Sense Model to analyze survey responses of 409 patients with type 2 diabetes risk factors. Patients were interested in genetic testing for type 2 diabetes risk and believed in its importance. Most patients believed that genetic factors are important to developing type 2 diabetes (67%), that diet and exercise are effective in preventing type 2 diabetes (95%), and that lifestyle changes are more effective than drugs (86%). Belief in genetic causality was not related to poorer self-reported health behaviors. These results suggest that patients interest in genetic testing for type 2 diabetes might produce a teachable moment that clinicians can use to counsel behavior change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. METHODS: To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. RESULTS: This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. CONCLUSIONS: The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these interventions. Through these efforts and collaboration with other stakeholders, IGNITE is poised to have a significant impact on the acceleration of genomic information into medical practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Family health history (FHH) in the context of risk assessment has been shown to positively impact risk perception and behavior change. The added value of genetic risk testing is less certain. The aim of this study was to determine the impact of Type 2 Diabetes (T2D) FHH and genetic risk counseling on behavior and its cognitive precursors. Subjects were non-diabetic patients randomized to counseling that included FHH +/- T2D genetic testing. Measurements included weight, BMI, fasting glucose at baseline and 12 months and behavioral and cognitive precursor (T2D risk perception and control over disease development) surveys at baseline, 3, and 12 months. 391 subjects enrolled of which 312 completed the study. Behavioral and clinical outcomes did not differ across FHH or genetic risk but cognitive precursors did. Higher FHH risk was associated with a stronger perceived T2D risk (pKendall < 0.001) and with a perception of "serious" risk (pKendall < 0.001). Genetic risk did not influence risk perception, but was correlated with an increase in perception of "serious" risk for moderate (pKendall = 0.04) and average FHH risk subjects (pKendall = 0.01), though not for the high FHH risk group. Perceived control over T2D risk was high and not affected by FHH or genetic risk. FHH appears to have a strong impact on cognitive precursors of behavior change, suggesting it could be leveraged to enhance risk counseling, particularly when lifestyle change is desirable. Genetic risk was able to alter perceptions about the seriousness of T2D risk in those with moderate and average FHH risk, suggesting that FHH could be used to selectively identify individuals who may benefit from genetic risk testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.