4 resultados para Marshall, T.
em Duke University
Resumo:
Evolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and coevolution on ecosystem processes in Trinidadian streams. We manipulated the presence and population-of-origin of two common fish species, the guppy (Poecilia reticulata) and the killifish (Rivulus hartii). We measured epilithic algal biomass and accrual, aquatic invertebrate biomass, and detrital decomposition. Our results show that, for some ecosystem responses, the effects of evolution and coevolution were larger than the effects of species invasion. Guppy evolution in response to alternative predation regimes significantly influenced algal biomass and accrual rates. Guppies from a high-predation site caused an increase in algae relative to guppies from a low-predation site; algae effects were probably shaped by observed divergence in rates of nutrient excretion and algae consumption. Rivulus-guppy coevolution significantly influenced the biomass of aquatic invertebrates. Locally coevolved populations reduced invertebrate biomass relative to non-coevolved populations. These results challenge the general assumption that intraspecific diversity is a less critical determinant of ecosystem function than is interspecific diversity. Given existing evidence for contemporary evolution in these fish species, our findings suggest considerable potential for eco-evolutionary feedbacks to operate as populations adapt to natural or anthropogenic perturbations.
Resumo:
Monoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env.
Resumo:
Confronting the rapidly increasing, worldwide reliance on biometric technologies to surveil, manage, and police human beings, my dissertation talic>Informatic Opacity: Biometric Facial Recognition and the Aesthetics and Politics of Defacement</italic> charts a series of queer, feminist, and anti-racist concepts and artworks that favor opacity as a means of political struggle against surveillance and capture technologies in the 21st century. Utilizing biometric facial recognition as a paradigmatic example, I argue that today's surveillance requires persons to be informatically visible in order to control them, and such visibility relies upon the production of technical standardizations of identification to operate globally, which most vehemently impact non- normative, minoritarian populations. Thus, as biometric technologies turn exposures of the face into sites of governance, activists and artists strive to make the face biometrically illegible and refuse the political recognition biometrics promises through acts of masking, escape, and imperceptibility. Although I specifically describe tactics of making the face unrecognizable as "defacement," I broadly theorize refusals to visually cohere to digital surveillance and capture technologies' gaze as "informatic opacity," an aesthetic-political theory and practice of anti- normativity at a global, technical scale whose goal is maintaining the autonomous determination of alterity and difference by evading the quantification, standardization, and regulation of identity imposed by biometrics and the state. My dissertation also features two artworks: talic>Facial Weaponization Suitetalic>, a series of masks and public actions, and talic>Face Cagestalic>, a critical, dystopic installation that investigates the abstract violence of biometric facial diagramming and analysis. I develop an interdisciplinary, practice-based method that pulls from contemporary art and aesthetic theory, media theory and surveillance studies, political and continental philosophy, queer and feminist theory, transgender studies, postcolonial theory, and critical race studies.
Resumo:
The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.