2 resultados para Manganese(II) complexes
em Duke University
Resumo:
We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range.
Resumo:
The difference in electrostatics and reduction potentials between manganese ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP) and manganese meta-tetrakis(N-ethylpyridinium-3-yl)porphyrin (MnTE-3-PyP) is a challenging topic, particularly because of the high likelihood for their clinical development. Hence, a detailed study of the protolytic and electrochemical speciation of Mn(II-IV)TE-2-PyP and Mn(II-IV)TE-3-PyP in a broad pH range has been performed using the combined spectrophotometric and potentiometric methods. The results reveal that in aqueous solutions within the pH range ∼2-13 the following species exist: (H(2)O)Mn(II)TE-m-PyP(4+), (HO)Mn(II)TE-m-PyP(3+), (H(2)O)(2)Mn(III)TE-m-PyP(5+), (HO)(H(2)O)Mn(III)TE-m-PyP(4+), (O)(H(2)O)Mn(III)TE-m-PyP(3+), (O)(H(2)O)Mn(IV)TE-m-PyP(4+) and (O)(HO)Mn(IV)TE-m-PyP(3+) (m = 2, 3). All the protolytic equilibrium constants that include the accessible species as well as the thermodynamic parameters for each particular protolytic equilibrium have been determined. The corresponding formal reduction potentials related to the reduction of the above species and the thermodynamic parameters describing the accessible reduction couples were calculated as well.