5 resultados para Magnetic response

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of making an optically large (many wavelengths in diameter) object appear invisible has been a subject of many recent studies. Exact invisibility scenarios for large (relative to the wavelength) objects involve (meta)materials with superluminal phase velocity [refractive index (RI) less than unity] and/or magnetic response. We introduce a new approximation applicable to certain device geometries in the eikonal limit: piecewise-uniform scaling of the RI. This transformation preserves the ray trajectories but leads to a uniform phase delay. We show how to take advantage of phase delays to achieve a limited (directional and wavelength-dependent) form of invisibility that does not require loss-ridden (meta)materials with superluminal phase velocities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electromagnetic metamaterials are artificially structured media typically composed of arrays of resonant electromagnetic circuits, the dimension and spacing of which are considerably smaller than the free-space wavelengths of operation. The constitutive parameters for metamaterials, which can be obtained using full-wave simulations in conjunction with numerical retrieval algorithms, exhibit artifacts related to the finite size of the metamaterial cell relative to the wavelength. Liu showed that the complicated, frequency-dependent forms of the constitutive parameters can be described by a set of relatively simple analytical expressions. These expressions provide useful insight and can serve as the basis for more intelligent interpolation or optimization schemes. Here, we show that the same analytical expressions can be obtained using a transfer-matrix formalism applied to a one-dimensional periodic array of thin, resonant, dielectric, or magnetic sheets. The transfer-matrix formalism breaks down, however, when both electric and magnetic responses are present in the same unit cell, as it neglects the magnetoelectric coupling between unit cells. We show that an alternative analytical approach based on the same physical model must be applied for such structures. Furthermore, in addition to the intercell coupling, electric and magnetic resonators within a unit cell may also exhibit magnetoelectric coupling. For such cells, we find an analytical expression for the effective index, which displays markedly characteristic dispersion features that depend on the strength of the coupling coefficient. We illustrate the applicability of the derived expressions by comparing to full-wave simulations on magnetoelectric unit cells. We conclude that the design of metamaterials with tailored simultaneous electric and magnetic response-such as negative index materials-will generally be complicated by potentially unwanted magnetoelectric coupling. © 2010 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dorsomedial prefrontal cortex (DMPFC) plays a central role in aspects of cognitive control and decision making. Here, we provide evidence for an anterior-to-posterior topography within the DMPFC using tasks that evoke three distinct forms of control demands--response, decision, and strategic--each of which could be mapped onto independent behavioral data. Specifically, we identify three spatially distinct regions within the DMPFC: a posterior region associated with control demands evoked by multiple incompatible responses, a middle region associated with control demands evoked by the relative desirability of decision options, and an anterior region that predicts control demands related to deviations from an individual's preferred decision-making strategy. These results provide new insight into the functional organization of DMPFC and suggest how recent controversies about its role in complex decision making and response mapping can be reconciled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing exposure to chemicals in our environment and the increasing concern over their impact on health have elevated the need for new methods for surveying the detrimental effects of these compounds. Today's gold standard for assessing the effects of toxicants on the brain is based on hematoxylin and eosin (H&E)-stained histology, sometimes accompanied by special stains or immunohistochemistry for neural processes and myelin. This approach is time-consuming and is usually limited to a fraction of the total brain volume. We demonstrate that magnetic resonance histology (MRH) can be used for quantitatively assessing the effects of central nervous system toxicants in rat models. We show that subtle and sparse changes to brain structure can be detected using magnetic resonance histology, and correspond to some of the locations in which lesions are found by traditional pathological examination. We report for the first time diffusion tensor image-based detection of changes in white matter regions, including fimbria and corpus callosum, in the brains of rats exposed to 8 mg/kg and 12 mg/kg trimethyltin. Besides detecting brain-wide changes, magnetic resonance histology provides a quantitative assessment of dose-dependent effects. These effects can be found in different magnetic resonance contrast mechanisms, providing multivariate biomarkers for the same spatial location. In this study, deformation-based morphometry detected areas where previous studies have detected cell loss, while voxel-wise analyses of diffusion tensor parameters revealed microstructural changes due to such things as cellular swelling, apoptosis, and inflammation. Magnetic resonance histology brings a valuable addition to pathology with the ability to generate brain-wide quantitative parametric maps for markers of toxic insults in the rodent brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological macromolecules can rearrange interdomain orientations when binding to various partners. Interdomain dynamics serve as a molecular mechanism to guide the transitions between orientations. However, our understanding of interdomain dynamics is limited because a useful description of interdomain motions requires an estimate of the probabilities of interdomain conformations, increasing complexity of the problem.

Staphylococcal protein A (SpA) has five tandem protein-binding domains and four interdomain linkers. The domains enable Staphylococcus aureus to evade the host immune system by binding to multiple host proteins including antibodies. Here, I present a study of the interdomain motions of two adjacent domains in SpA. NMR spin relaxation experiments identified a 6-residue flexible interdomain linker and interdomain motions. To quantify the anisotropy of the distribution of interdomain orientations, we measured residual dipolar couplings (RDCs) from the two domains with multiple alignments. The N-terminal domain was directly aligned by a lanthanide ion and not influenced by interdomain motions, so it acted as a reference frame to achieve motional decoupling. We also applied {\it de novo} methods to extract spatial dynamic information from RDCs and represent interdomain motions as a continuous distribution on the 3D rotational space. Significant anisotropy was observed in the distribution, indicating the motion populates some interdomain orientations more than others. Statistical thermodynamic analysis of the observed orientational distribution suggests that it is among the energetically most favorable orientational distributions for binding to antibodies. Thus, the affinity is enhanced by a pre-posed distribution of interdomain orientations while maintaining the flexibility required for function.

The protocol described above can be applied to other biological systems in general. Protein molecule calmodulin and RNA molecule trans-activation response element (TAR) also have intensive interdomain motions with relative small intradomain dynamics. Their interdomain motions were studied using our method based on published RDC data. Our results were consistent with literature results in general. The differences could be due to previous studies' use of physical models, which contain assumptions about potential energy and thus introduced non-experimental information into the interpretations.