4 resultados para Macular degeneration
em Duke University
Resumo:
The objective of this study was to determine if MTND2*LHON4917G (4917G), a specific non-synonymous polymorphism in the mitochondrial genome previously associated with neurodegenerative phenotypes, is associated with increased risk for age-related macular degeneration (AMD). A preliminary study of 393 individuals (293 cases and 100 controls) ascertained at Vanderbilt revealed an increased occurrence of 4917G in cases compared to controls (15.4% vs.9.0%, p = 0.11). Since there was a significant age difference between cases and controls in this initial analysis, we extended the study by selecting Caucasian pairs matched at the exact age at examination. From the 1547 individuals in the Vanderbilt/Duke AMD population association study (including 157 in the preliminary study), we were able to match 560 (280 cases and 280 unaffected) on exact age at examination. This study population was genotyped for 4917G plus specific AMD-associated nuclear genome polymorphisms in CFH, LOC387715 and ApoE. Following adjustment for the listed nuclear genome polymorphisms, 4917G independently predicts the presence of AMD (OR = 2.16, 95%CI 1.20-3.91, p = 0.01). In conclusion, a specific mitochondrial polymorphism previously implicated in other neurodegenerative phenotypes (4917G) appears to convey risk for AMD independent of recently discovered nuclear DNA polymorphisms.
Resumo:
BACKGROUND: The learning preferences of ophthalmology patients were examined. METHODS: Results from a voluntary survey of ophthalmology patients were analyzed for education preferences and for correlation with race, age, and ophthalmic topic. RESULTS: To learn about eye disease, patients preferred one-on-one sessions with providers as well as printed materials and websites recommended by providers. Patients currently learning from the provider were older (average age 59 years), and patients learning from the Internet (average age 49 years) and family and friends (average age 51 years) were younger. Patients interested in cataracts, glaucoma, macular degeneration, and dry eye were older; patients interested in double vision and glasses were younger. There were racial differences regarding topic preferences, with Black patients most interested in glaucoma (46%), diabetic retinopathy (31%), and cataracts (28%) and White patients most interested in cataracts (22%), glaucoma (22%), and macular degeneration (19%). CONCLUSION: MOST OPHTHALMOLOGY PATIENTS PREFERRED PERSONALIZED EDUCATION: one-on-one with their provider or a health educator and materials (printed and electronic) recommended by their provider. Age-related topics were more popular with older patients, and diseases with racial risk factors were more popular with high risk racial groups.
Resumo:
Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/- and Cfh-/- mice fed a high fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (RPE) deposit formation, specifically basal laminar deposits, following high fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/- and Cfh-/- mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/- mice. We demonstrate that such pathology is a function of excess complement activation and C5a production, associated with monocyte recruitment, in Cfh+/- mice versus complement deficiency in Cfh-/- animals. Due to the CFH dependent increase in sub-RPE deposit height we interrogated the potential of CFH as a novel regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Interestingly, although the CFH H402 variant shows altered binding to BrM, this does not affect its ability to remove endogenous lipoproteins. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD.
Resumo:
Advancements in retinal imaging technologies have drastically improved the quality of eye care in the past couple decades. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) are two examples of critical imaging modalities for the diagnosis of retinal pathologies. However current-generation SLO and OCT systems have limitations in diagnostic capability due to the following factors: the use of bulky tabletop systems, monochromatic imaging, and resolution degradation due to ocular aberrations and diffraction.
Bulky tabletop SLO and OCT systems are incapable of imaging patients that are supine, under anesthesia, or otherwise unable to maintain the required posture and fixation. Monochromatic SLO and OCT imaging prevents the identification of various color-specific diagnostic markers visible with color fundus photography like those of neovascular age-related macular degeneration. Resolution degradation due to ocular aberrations and diffraction has prevented the imaging of photoreceptors close to the fovea without the use of adaptive optics (AO), which require bulky and expensive components that limit the potential for widespread clinical use.
In this dissertation, techniques for extending the diagnostic capability of SLO and OCT systems are developed. These techniques include design strategies for miniaturizing and combining SLO and OCT to permit multi-modal, lightweight handheld probes to extend high quality retinal imaging to pediatric eye care. In addition, a method for extending true color retinal imaging to SLO to enable high-contrast, depth-resolved, high-fidelity color fundus imaging is demonstrated using a supercontinuum light source. Finally, the development and combination of SLO with a super-resolution confocal microscopy technique known as optical photon reassignment (OPRA) is demonstrated to enable high-resolution imaging of retinal photoreceptors without the use of adaptive optics.