1 resultado para Machine de Boltzmann restreinte
em Duke University
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (22)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (21)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (13)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (55)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Bibloteca do Senado Federal do Brasil (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (69)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (10)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (15)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (50)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (19)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (7)
- Harvard University (3)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Saúde Pública - SP (9)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (27)
- Universidade do Minho (7)
- Universidade Federal de Uberlândia (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (46)
- Université de Montréal, Canada (20)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (205)
- University of Queensland eSpace - Australia (29)
- University of Southampton, United Kingdom (2)
- University of Washington (6)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.