6 resultados para MacDonald, Murdoch, 1866-
em Duke University
Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam.
Resumo:
The T2K experiment observes indications of ν(μ) → ν(e) appearance in data accumulated with 1.43×10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Δm(23)(2)| = 2.4×10(-3) eV(2), sin(2)2θ(23) = 1 and sin(2)2θ(13) = 0, the expected number of such events is 1.5±0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7×10(-3), equivalent to 2.5σ significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2θ(13) < 0.28(0.34) for δ(CP) = 0 and a normal (inverted) hierarchy.
Resumo:
The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.
Resumo:
Centromeres are chromosomal loci essential for genome stability. Their malfunction can cause chromosome instability associated with cancer, infertility, and birth defects. This study focused on an intriguing centromere on human chromosome 17, which displays normal functional variation. Centromere identity can be found on either of two large arrays of repetitive DNA. We investigated inter-individual sequence variation on these two arrays and found association between array size, array variation, and centromere function. Our data suggest a functional influence of DNA sequence at this critical epigenetic locus.
Resumo:
As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.
Resumo:
The switching thresholds of magnetophoretic transistors for sorting cells in microfluidic environments are characterized. The transistor operating conditions require short 20-30 mA pulses of electrical current. By demonstrating both attractive and repulsive transistor modes, a single transistor architecture is used to implement the full write cycle for importing and exporting single cells in specified array sites.