2 resultados para MOLECULAR CHAPERONE

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular chaperones are a highly diverse group of proteins that recognize and bind unfolded proteins to facilitate protein folding and prevent nonspecific protein aggregation. The mechanisms by which chaperones bind their protein substrates have been studied for decades. However, there are few reports about the affinity of molecular chaperones for their unfolded protein substrates. Thus, little is known about the relative binding affinities of different chaperones and about the relative binding affinities of chaperones for different unfolded protein substrates. Here we describe the application of SUPREX (stability of unpurified proteins from rates of H-D exchange), an H-D exchange and MALDI-based technique, in studying the binding interaction between the molecular chaperone Hsp33 and four different unfolded protein substrates, including citrate synthase, lactate dehydrogenase, malate dehydrogenase, and aldolase. The results of our studies suggest that the cooperativity of the Hsp33 folding-unfolding reaction increases upon binding with denatured protein substrates. This is consistent with the burial of significant hydrophobic surface area in Hsp33 when it interacts with its substrate proteins. The SUPREX-derived K(d) values for Hsp33 complexes with four different substrates were all found to be within the range of 3-300 nM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.