5 resultados para MEK

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social structure is a key determinant of population biology and is central to the way animals exploit their environment. The risk of predation is often invoked as an important factor influencing the evolution of social structure in cetaceans and other mammals, but little direct information is available about how cetaceans actually respond to predators or other perceived threats. The playback of sounds to an animal is a powerful tool for assessing behavioral responses to predators, but quantifying behavioral responses to playback experiments requires baseline knowledge of normal behavioral patterns and variation. The central goal of my dissertation is to describe baseline foraging behavior for the western Atlantic short-finnned pilot whales (Globicephala macrohynchus) and examine the role of social organization in their response to predators. To accomplish this I used multi-sensor digital acoustic tags (DTAGs), satellite-linked time-depth recorders (SLTDR), and playback experiments to study foraging behavior and behavioral response to predators in pilot whales. Fine scale foraging strategies and population level patterns were identified by estimating the body size and examining the location and movement around feeding events using data collected with DTAGs deployed on 40 pilot whales in summers of 2008-2014 off the coast of Cape Hatteras, North Carolina. Pilot whales were found to forage throughout the water column and performed feeding buzzes at depths ranging from 29-1176 meters. The results indicated potential habitat segregation in foraging depth in short-finned pilot whales with larger individuals foraging on average at deeper depths. Calculated aerobic dive limit for large adult males was approximately 6 minutes longer than that of females and likely facilitated the difference in foraging depth. Furthermore, the buzz frequency and speed around feeding attempts indicate this population pilot whales are likely targeting multiple small prey items. Using these results, I built decision trees to inform foraging dive classification in coarse, long-term dive data collected with SLTDRs deployed on 6 pilot whales in the summers of 2014 and 2015 in the same area off the coast of North Carolina. I used these long term foraging records to compare diurnal foraging rates and depths, as well as classify bouts with a maximum likelihood method, and evaluate behavioral aerobic dive limits (ADLB) through examination of dive durations and inter-dive intervals. Dive duration was the best predictor of foraging, with dives >400.6 seconds classified as foraging, and a 96% classification accuracy. There were no diurnal patterns in foraging depth or rates and average duration of bouts was 2.94 hours with maximum bout durations lasting up to 14 hours. The results indicated that pilot whales forage in relatively long bouts and the ADLB indicate that pilot whales rarely, if ever exceed their aerobic limits. To evaluate the response to predators I used controlled playback experiments to examine the behavioral responses of 10 of the tagged short-finned pilot whales off Cape Hatteras, North Carolina and 4 Risso’s dolphins (Grampus griseus) off Southern California to the calls of mammal-eating killer whales (MEK). Both species responded to a subset of MEK calls with increased movement, swim speed and increased cohesion of the focal groups, but the two species exhibited different directional movement and vocal responses. Pilot whales increased their call rate and approached the sound source, but Risso’s dolphins exhibited no change in their vocal behavior and moved in a rapid, directed manner away from the source. Thus, at least to a sub-set of mammal-eating killer whale calls, these two study species reacted in a manner that is consistent with their patterns of social organization. Pilot whales, which live in relatively permanent groups bound by strong social bonds, responded in a manner that built on their high levels of social cohesion. In contrast, Risso’s dolphins exhibited an exaggerated flight response and moved rapidly away from the sound source. The fact that both species responded strongly to a select number of MEK calls, suggests that structural features of signals play critical contextual roles in the probability of response to potential threats in odontocete cetaceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many antipain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally innervated territories in mice. In addition, we examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, and because we have recently defined TRPV4's role in response to airborne irritants and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whisker pad injections. This conclusion is supported by studies with Trpv4(-/-) mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca(2+). Using TRPA1-blocker and Trpa1(-/-) mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, temporomandibular joint, facial, and dental pain, and irritation of trigeminally innervated surface epithelia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigeminal ganglion sensory neurons, to TMJ inflammation and pain behavior. We demonstrate here that TRPV4 is critical for TMJ-inflammation-evoked pain behavior in mice and that trigeminal ganglion pronociceptive changes are TRPV4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4(-/-) mice with TMJ inflammation, attenuation of bite force was significantly less than in wildtype (WT) mice. Similar effects were seen with systemic application of a specific TRPV4 inhibitor. TMJ inflammation and mandibular bony changes were apparent after injections of complete Freund adjuvant but were remarkably independent of the Trpv4 genotype. It was intriguing that, as a result of TMJ inflammation, WT mice exhibited significant upregulation of TRPV4 and phosphorylated extracellular-signal-regulated kinase (ERK) in TMJ-innervating trigeminal sensory neurons, which were absent in Trpv4(-/-) mice. Mice with genetically-impaired MEK/ERK phosphorylation in neurons showed resistance to reduction of bite force similar to that of Trpv4(-/-) mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ inflammation and probably functions upstream of MEK/ERK phosphorylation in trigeminal ganglion sensory neurons in vivo. TRPV4 therefore represents a novel pronociceptive target in TMJ inflammation and should be considered a target of interest in human TMJD.