9 resultados para Lyme disease-like

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In April 2008, the Infectious Diseases Society of America (IDSA) entered into an agreement with Connecticut Attorney General Richard Blumenthal to voluntarily undertake a special review of its 2006 Lyme disease guidelines. This agreement ended the Attorney General's investigation into the process by which the guidelines were developed. The IDSA agreed to convene an independent panel to conduct a one-time review of the guidelines. The Review Panel members, vetted by an ombudsman for potential conflicts of interest, reviewed the entirety of the 2006 guidelines, with particular attention to the recommendations devoted to post-Lyme disease syndromes. After multiple meetings, a public hearing, and extensive review of research and other information, the Review Panel concluded that the recommendations contained in the 2006 guidelines were medically and scientifically justified on the basis of all of the available evidence and that no changes to the guidelines were necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background.  The majority of Lyme disease cases in the United States are acquired on the east coast between northern Virginia and New England. In recent years the geographic extent of Lyme disease has been expanding, raising the prospect of Lyme disease becoming endemic in the southeast. Methods.  We collected confirmed and probable cases of Lyme disease from 2000 through 2014 from the Virginia Department of Health and North Carolina Department of Public Health and entered them in a geographic information system. We performed spatial and spatiotemporal cluster analyses to characterize Lyme disease expansion. Results.  There was a marked increase in Lyme disease cases in Virginia, particularly from 2007 onwards. Northern Virginia experienced intensification and geographic expansion of Lyme disease cases. The most notable area of expansion was to the southwest along the Appalachian Mountains with development of a new disease cluster in the southern Virginia mountain region. Conclusions.  The geographic distribution of Lyme disease cases significantly expanded in Virginia between 2000 and 2014, particularly southward in the Virginia mountain ranges. If these trends continue, North Carolina can expect autochthonous Lyme disease transmission in its mountain region in the coming years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Outbreaks of infectious diseases such as Ebola have dramatic economic impacts on affected nations due to significant direct costs and indirect costs, as well as increased expenditure by the government to meet the health and security crisis. Despite its dense population, Nigeria was able to contain the outbreak swiftly and was declared Ebola free on 13th October 2014. Although Nigeria’s Ebola containment success was multifaceted, the private sector played a key role in Nigeria’s fight against Ebola. An epidemic of a disease like Ebola, not only consumes health resources but also detrimentally disrupts trade and travel to impact both public and private sector resulting in the ‘fearonomic’ effect of the contagion. In this thesis, I have defined ‘fearonomics’ or the ‘fearonomic effects’ of a disease as the intangible and intangible economic effects of both informed and misinformed aversion behavior exhibited by individuals, organizations, or countries during an outbreak. During an infectious disease outbreak, there is a significant potential for public-private sector collaborations that can help offset some of the government’s cost of controlling the epidemic.

Objective: The main objective of this study is to understand the ‘fearonomics’ of Ebola in Nigeria and to evaluate the role of the key private sector stakeholders in Nigeria’s Ebola response.

Methods: This retrospective qualitative study was conducted in Nigeria and utilizes grounded theory to look across different economic sectors in Nigeria to understand the impact of Ebola on Nigeria’s private sector and how it dealt with the various challenges posed by the disease and its ‘fearonomic effects'.

Results: Due to swift containment of Ebola in Nigeria, the economic impact of the disease was limited especially in comparison to the other Ebola-infected countries such as Liberia, Sierra Leone, and Guinea. However, the 2014 Ebola outbreak had more than a just direct impact on the country’s economy and despite the swift containment, no economic sector was immune to the disease’s fearonomic impact. The potential scale of the fearonomic impact of a disease like Ebola was one of the key motivators for the private sector engagement in the Ebola response.

The private sector in Nigeria played an essential role in facilitating the country’s response to Ebola. The private sector not only provided in-cash donations but significant in-kind support to both the Federal and State governments during the outbreak. Swift establishment of an Ebola Emergency Operation Centre (EEOC) was essential to the country’s response and was greatly facilitated by the private sector, showcasing the crucial role of private sector in the initial phase of an outbreak. The private sector contributed to Nigeria’s fight against Ebola not only by donating material assets but by continuing operations and partaking in knowledge sharing and advocacy. Some sector such as the private health sector, telecom sector, financial sector, oil and gas sector played a unique role in orchestrating the Nigerian Ebola response and were among the first movers during the outbreak.

This paper utilizes the lessons from Nigeria’s containment of Ebola to highlight the potential of public-private partnerships in preparedness, response, and recovery during an outbreak.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegenerative diseases like Alzheimer's and Parkinson's disease are associated with elevated levels of iron, copper, and zinc and consequentially high levels of oxidative stress. Given the multifactorial nature of these diseases, it is becoming evident that the next generation of therapies must have multiple functions to combat multiple mechanisms of disease progression. Metal-chelating agents provide one such function as an intervention for ameliorating metal-associated damage in degenerative diseases. Targeting chelators to adjust localized metal imbalances in the brain, however, presents significant challenges. In this perspective, we focus on some noteworthy advances in the area of multifunctional metal chelators as potential therapeutic agents for neurodegenerative diseases. In addition to metal chelating ability, these agents also contain features designed to improve their uptake across the blood-brain barrier, increase their selectivity for metals in damage-prone environments, increase antioxidant capabilities, lower Abeta peptide aggregation, or inhibit disease-associated enzymes such as monoamine oxidase and acetylcholinesterase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1-NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are "ciliopathies". Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinesin-like factor 1 B (KIF1B) gene plays an important role in the process of apoptosis and the transformation and progression of malignant cells. Genetic variations in KIF1B may contribute to risk of epithelial ovarian cancer (EOC). In this study of 1,324 EOC patients and 1,386 cancer-free female controls, we investigated associations between two potentially functional single nucleotide polymorphisms in KIF1B and EOC risk by the conditional logistic regression analysis. General linear regression model was used to evaluate the correlation between the number of variant alleles and KIF1B mRNA expression levels. We found that the rs17401966 variant AG/GG genotypes were significantly associated with a decreased risk of EOC (adjusted odds ratio (OR) = 0.81, 95 % confidence interval (CI) = 0.68-0.97), compared with the AA genotype, but no associations were observed for rs1002076. Women who carried both rs17401966 AG/GG and rs1002076 AG/AA genotypes of KIF1B had a 0.82-fold decreased risk (adjusted 95 % CI = 0.69-0.97), compared with others. Additionally, there was no evidence of possible interactions between about-mentioned co-variants. Further genotype-phenotype correlation analysis indicated that the number of rs17401966 variant G allele was significantly associated with KIF1B mRNA expression levels (P for GLM = 0.003 and 0.001 in all and Chinese subjects, respectively), with GG carriers having the lowest level of KIF1B mRNA expression. Taken together, the rs17401966 polymorphism likely regulates KIF1B mRNA expression and thus may be associated with EOC risk in Eastern Chinese women. Larger, independent studies are warranted to validate our findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathogenesis of Alzheimer’s disease (AD) is a critical unsolved question, and while recent studies have demonstrated a strong association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition, hyperphosphorylated and aggregated tau, behavioral changes and age-dependent hippocampal neuronal loss. Using this mouse model, we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology is driven by pro-inflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of hippocampal neuronal death are associated with the presence of immunosuppressive CD11c+ microglia and extracellular arginase, resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism mediating the age-dependent and regional loss of neurons in humans with AD.

There is a large interest in identifying, lineage tracing, and determining the physiologic roles of monophagocytes in Alzheimer’s disease. While Cx3cr1 knock-in fluorescent reporting and Cre expressing mice have been critical for studying neuroimmunology, mice that are homozygous null or hemizygous for CX3CR1 have perturbed neural development and immune responses. There is, therefore, a need for similar tools in which mice are CX3CR1+/+. Here, we describe a mouse where Cre is driven by the Cx3cr1 promoter on a bacterial artificial chromosome (BAC) transgene (Cx3cr1-CreBT) and the Cx3cr1 locus is unperturbed. Similarly to Cx3cr1-Cre knock-in mice, these mice express Cre in Ly6C-, but not Ly6C+, monocytes and tissue macrophages, including microglia. These mice represent a novel tool that maintains the Cx3cr1 locus while allowing for selective gene targeting in monocytes and tissue macrophages.

The study of immunity in Alzheimer’s requires the ability to identify and quantify specific immune cell subsets by flow cytometry. While it is possible to identify lymphocyte subsets based on cell lineage-specific markers, the lack of such markers in brain myeloid cell subsets has prevented the study of monocytes, macrophages and dendritic cells. By improving on tissue homogenization, we present a comprehensive protocol for flow cytometric analysis, that allows for the identification of several cell types that have not been previously identified by flow cytometry. These cell types include F4/80hi macrophages, which may be meningeal macrophages, IA/IE+ macrophages, which may represent perivascular macrophages, and dendritic cells. The identification of these cell types now allows for their study by flow cytometry in homeostasis and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.