10 resultados para Lung Neoplasms

em Duke University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: The Lung Cancer Exercise Training Study (LUNGEVITY) is a randomized trial to investigate the efficacy of different types of exercise training on cardiorespiratory fitness (VO2peak), patient-reported outcomes, and the organ components that govern VO2peak in post-operative non-small cell lung cancer (NSCLC) patients. METHODS/DESIGN: Using a single-center, randomized design, 160 subjects (40 patients/study arm) with histologically confirmed stage I-IIIA NSCLC following curative-intent complete surgical resection at Duke University Medical Center (DUMC) will be potentially eligible for this trial. Following baseline assessments, eligible participants will be randomly assigned to one of four conditions: (1) aerobic training alone, (2) resistance training alone, (3) the combination of aerobic and resistance training, or (4) attention-control (progressive stretching). The ultimate goal for all exercise training groups will be 3 supervised exercise sessions per week an intensity above 70% of the individually determined VO2peak for aerobic training and an intensity between 60 and 80% of one-repetition maximum for resistance training, for 30-45 minutes/session. Progressive stretching will be matched to the exercise groups in terms of program length (i.e., 16 weeks), social interaction (participants will receive one-on-one instruction), and duration (30-45 mins/session). The primary study endpoint is VO2peak. Secondary endpoints include: patient-reported outcomes (PROs) (e.g., quality of life, fatigue, depression, etc.) and organ components of the oxygen cascade (i.e., pulmonary function, cardiac function, skeletal muscle function). All endpoints will be assessed at baseline and postintervention (16 weeks). Substudies will include genetic studies regarding individual responses to an exercise stimulus, theoretical determinants of exercise adherence, examination of the psychological mediators of the exercise - PRO relationship, and exercise-induced changes in gene expression. DISCUSSION: VO2peak is becoming increasingly recognized as an outcome of major importance in NSCLC. LUNGEVITY will identify the optimal form of exercise training for NSCLC survivors as well as provide insight into the physiological mechanisms underlying this effect. Overall, this study will contribute to the establishment of clinical exercise therapy rehabilitation guidelines for patients across the entire NSCLC continuum. TRIAL REGISTRATION: NCT00018255.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63). CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (PNON) and adaptive plan (PADP), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between PNON and PADP for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (dT-OAR), initial internal target volume (ITV1), ITV change (ΔITV), and effective ITV diameter change (ΔdITV). RESULTS: 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from -59.6% to 13.0%, with a mean (±SD) of -21.0% (±21.4%). On average of all patients, PADP resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. ΔdITV/dT-OAR was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between ΔdITV/dT-OAR and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. CONCLUSIONS: Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. METHODOLOGY/PRINCIPAL FINDINGS: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. CONCLUSIONS/SIGNIFICANCE: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Platinum agents can cause the formation of DNA adducts and induce apoptosis to eliminate tumor cells. The aim of the present study was to investigate the influence of genetic variants of MDM2 on chemotherapy-related toxicities and clinical outcomes in patients with advanced non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS: We recruited 663 patients with advanced NSCLC who had been treated with first-line platinum-based chemotherapy. Five tagging single nucleotide polymorphisms (SNPs) in MDM2 were genotyped in these patients. The associations of these SNPs with clinical toxicities and outcomes were evaluated using logistic regression and Cox regression analyses. RESULTS: Two SNPs (rs1470383 and rs1690924) showed significant associations with chemotherapy-related toxicities (ie, overall, hematologic, and gastrointestinal toxicity). Compared with the wild genotype AA carriers, patients with the GG genotype of rs1470383 had an increased risk of overall toxicity (odds ratio [OR], 3.28; 95% confidence interval [CI], 1.34-8.02; P = .009) and hematologic toxicity (OR, 4.10; 95% CI, 1.73-9.71; P = .001). Likewise, patients with the AG genotype of rs1690924 showed more sensitivity to gastrointestinal toxicity than did those with the wild-type homozygote GG (OR, 2.32; 95% CI, 1.30-4.14; P = .004). Stratified survival analysis revealed significant associations between rs1470383 genotypes and overall survival in patients without overall or hematologic toxicity (P = .007 and P = .0009, respectively). CONCLUSION: The results of our study suggest that SNPs in MDM2 might be used to predict the toxicities of platinum-based chemotherapy and overall survival in patients with advanced NSCLC. Additional validations of the association are warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small GTPases HRAS, NRAS and KRAS are mutated in approximately one-third of all human cancers, rendering the proteins constitutively active and oncogenic. Lung cancer is the leading cause of cancer deaths worldwide, and more than 20% of human lung cancers harbor mutations in RAS, with 98% of those occurring in the KRAS isoform. While there have been many advances in the understanding of KRAS–driven lung tumorigenesis, it remains a therapeutic challenge. To further this understanding and assess novel approaches for treatment, I have investigated two aspects of Kras–driven tumorigenesis in the lung:

(I) Despite nearly identical protein sequences, the three RAS proto-oncogenes exhibit divergent codon usage. Of the three isoforms, KRAS contains the most rare codons resulting in lower levels of KRAS protein expression relative to HRAS and NRAS. To determine the consequences of rare codon bias during de novo tumorigenesis, we created a knock-in Krasex3op mouse in which synonymous mutations in exon 3 converted codons from rare to common. These mice had reduced tumor burden and fewer oncogenic mutations in the Krasex3op allele following carcinogen exposure. The reduction in tumorigenesis appeared to be a product of rare codons affecting both the oncogenic and non–oncogenic alleles. Converting rare codons to common codons yielded a more potent oncogenic allele that promoted growth arrest and enhanced tumor suppression by the non-oncogenic allele. Thus, rare codons play an integral role in Kras tumorigenesis.

(II) Lung cancer patients exhale higher levels of NO and iNOS-/- mice are resistant to chemically induced lung tumorigenesis. I hypothesize that NO promotes Kras–driven lung adenocarcinoma, and NOS inhibition may decrease Kras–driven lung tumorigenesis. To test this hypothesis, I assessed efficacy of the NOS inhibitor L–NAME in a genetically engineered mouse model of Kras-driven lung adenocarcinoma. Adenoviral Cre recombinase was delivered into the lungs intranasally, resulting in expression of oncogenic KrasG12D and dominant-negative Trp53R172H in lung epithelial cells. L–NAME treatment was provided in the water and continued until survival endpoints. In this model, L–NAME treatment decreased tumor growth and prolonged survival. These data establish a potential clinical role for NOS inhibition in lung cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF). To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. RESULTS: Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER) marker, TRAPalpha, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939), an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. CONCLUSION: These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two cases of Shone syndrome with severe mitral and aortic valve problems and pulmonary hypertension were referred for heart-lung transplantation. Severely elevated pulmonary vascular resistance (PVR) was confirmed as was severe periprosthetic mitral and aortic regurgitation. Based on the severity of the valve lesions in both patients, surgery was decided upon and undertaken. Both experienced early pulmonary hypertensive crises, one more than the other, that gradually subsided, followed by excellent recovery and reversal of pulmonary hypertension and PVR. These cases illustrate Braunwald's concept that pulmonary hypertension secondary to left-sided valve disease is reversible.