4 resultados para Leptin and STAT3

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Leptin is an adipokine that regulates body weight and appetite. It is also an inflammatory cytokine that influences immune reactivity and autoimmunity. Leptin levels are increased in obesity and are higher in women than in men. We aimed to determine whether leptin levels, independent of sex and body mass index (BMI), are associated with thyroid autoimmunity. DESIGN: This study uses data from The Third National Health and Nutrition Examination Survey (NHANES III) to test the association of leptin and thyroid autoimmunity, independent of BMI. MEASUREMENTS: Thyroid-stimulating hormone, thyroxine, antithyroid peroxidase (TPO) antibodies and leptin levels were measured in 2902 men and 3280 women within the NHANES III population. BMI was calculated from height and weight. RESULTS: Women had significantly higher leptin levels and anti-TPO antibody titres than men. Correlation analyses demonstrated that leptin levels were associated with anti-TPO antibody levels in the total population, but when men and women were analysed separately, this association was lost. We then stratified men and women into obese (BMI > 30) or nonobese (BMI ≤ 30) subgroups and determined the association between leptin levels and anti-TPO antibody titres for each subgroup. Using regression analysis, we found that increased leptin levels correlated with thyroid autoantibodies in nonobese males, but not in obese males or in females. CONCLUSIONS: Leptin levels correlated with thyroid autoantibody titres in nonobese males. This association was not found in females. Sex and body habitus should therefore be considered in studying the role of leptin in other autoimmune conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutritional status is critically important for immune cell function. While obesity is characterized by inflammation that promotes metabolic syndrome including cardiovascular disease and insulin resistance, malnutrition can result in immune cell defects and increased risk of mortality from infectious diseases. T cells play an important role in the immune adaptation to both obesity and malnutrition. T cells in obesity have been shown to have an early and critical role in inducing inflammation, accompanying the accumulation of inflammatory macrophages in obese adipose tissue, which are known to promote insulin resistance. How T cells are recruited to adipose tissue and activated in obesity is a topic of considerable interest. Conversely, T cell number is decreased in malnourished individuals, and T cells in the setting of malnutrition have decreased effector function and proliferative capacity. The adipokine leptin, which is secreted in proportion to adipocyte mass, may have a key role in mediating adipocyte-T cell interactions in both obesity and malnutrition, and has been shown to promote effector T cell function and metabolism while inhibiting regulatory T cell proliferation. Additionally, key molecular signals are involved in T cell metabolic adaptation during nutrient stress; among them, the metabolic regulator AMP kinase and the mammalian target of rapamycin have critical roles in regulating T cell number, function, and metabolism. In summary, understanding how T cell number and function are altered in obesity and malnutrition will lead to better understanding of and treatment for diseases where nutritional status determines clinical outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.