6 resultados para Legendre polynomial

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this work is to analyze three-dimensional dispersive metallic photonic crystals (PCs) and to find a structure that can provide a bandgap and a high cutoff frequency. The determination of the band structure of a PC with dispersive materials is an expensive nonlinear eigenvalue problem; in this work we propose a rational-polynomial method to convert such a nonlinear eigenvalue problem into a linear eigenvalue problem. The spectral element method is extended to rapidly calculate the band structure of three-dimensional PCs consisting of realistic dispersive materials modeled by Drude and Drude-Lorentz models. Exponential convergence is observed in the numerical experiments. Numerical results show that, at the low frequency limit, metallic materials are similar to a perfect electric conductor, where the simulation results tend to be the same as perfect electric conductor PCs. Band structures of the scaffold structure and semi-woodpile structure metallic PCs are investigated. It is found that band structures of semi-woodpile PCs have a very high cutoff frequency as well as a bandgap between the lowest two bands and the higher bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that the first complex homology of the Johnson subgroup of the Torelli group Tg is a non-trivial, unipotent Tg-module for all g ≥ 4 and give an explicit presentation of it as a Sym H 1(Tg,C)-module when g ≥ 6. We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the infinitesimal Alexander invariant of the associated graded Lie algebra of G. In this setup, we also obtain a precise nilpotence test. © European Mathematical Society 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a theory of hypoellipticity and unique ergodicity for semilinear parabolic stochastic PDEs with "polynomial" nonlinearities and additive noise, considered as abstract evolution equations in some Hilbert space. It is shown that if Hörmander's bracket condition holds at every point of this Hilbert space, then a lower bound on the Malliavin covariance operatorμt can be obtained. Informally, this bound can be read as "Fix any finite-dimensional projection on a subspace of sufficiently regular functions. Then the eigenfunctions of μt with small eigenvalues have only a very small component in the image of Π." We also show how to use a priori bounds on the solutions to the equation to obtain good control on the dependency of the bounds on the Malliavin matrix on the initial condition. These bounds are sufficient in many cases to obtain the asymptotic strong Feller property introduced in [HM06]. One of the main novel technical tools is an almost sure bound from below on the size of "Wiener polynomials," where the coefficients are possibly non-adapted stochastic processes satisfying a Lips chitz condition. By exploiting the polynomial structure of the equations, this result can be used to replace Norris' lemma, which is unavailable in the present context. We conclude by showing that the two-dimensional stochastic Navier-Stokes equations and a large class of reaction-diffusion equations fit the framework of our theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2005-2012 IEEE.Within industrial automation systems, three-dimensional (3-D) vision provides very useful feedback information in autonomous operation of various manufacturing equipment (e.g., industrial robots, material handling devices, assembly systems, and machine tools). The hardware performance in contemporary 3-D scanning devices is suitable for online utilization. However, the bottleneck is the lack of real-time algorithms for recognition of geometric primitives (e.g., planes and natural quadrics) from a scanned point cloud. One of the most important and the most frequent geometric primitive in various engineering tasks is plane. In this paper, we propose a new fast one-pass algorithm for recognition (segmentation and fitting) of planar segments from a point cloud. To effectively segment planar regions, we exploit the orthonormality of certain wavelets to polynomial function, as well as their sensitivity to abrupt changes. After segmentation of planar regions, we estimate the parameters of corresponding planes using standard fitting procedures. For point cloud structuring, a z-buffer algorithm with mesh triangles representation in barycentric coordinates is employed. The proposed recognition method is tested and experimentally validated in several real-world case studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penalized regression, and then fix the difference between the concentration matrix and the skeleton by evaluating a set of conditional independence hypotheses. For high-dimensional problems where the number of vertices p is in polynomial or exponential scale of sample size n, we study the asymptotic property of PenPC on two types of graphs: traditional random graphs where all the vertices have the same expected number of neighbors, and scale-free graphs where a few vertices may have a large number of neighbors. As illustrated by extensive simulations and applications on gene expression data of cancer patients, PenPC has higher sensitivity and specificity than the state-of-the-art method, the PC-stable algorithm.