4 resultados para Learning Ability

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subjects read and recalled a series of five short stories in one of four plot and style combinations. The stories were written in one of two styles that consisted of opposing clause orders (i.e., independent-dependent vs. dependent-independent), tense forms (i.e., past vs. present), and descriptor forms (modifier modifier vs. modifier as a noun). The subjects incorporated both plot and style characteristics into their recalls. Other subjects, who, after five recalls, either generated a new story or listed the rules that had been followed by the stories read, included the marked forms of the characteristics they learned more often, except for tense. The subjects read and recalled four stories of the same plot and style and then read and recalled a fifth story of the same plot and style or of one of the other three plot/style combinations. Ability to switch style depended on both the characteristic and the markedness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ostensibly, BITs are the ideal international treaty. First, until just recently, they almost uniformly came with explicit dispute resolution mechanisms through which countries could face real costs for violation (Montt 2009). Second, the signing, ratification, and violation of them are easily accessible public knowledge. Thus countries presumably would face reputational costs for violating these agreements. Yet, these compliance devices have not dissuaded states from violating these agreements. Even more interestingly, in recent years, both developed and developing countries have moved towards modifying the investor-friendly provisions of these agreements. These deviations from the expectations of the credible commitment argument raise important questions about the field's assumptions regarding the ability of international treaties with commitment devices to effectively constrain state behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.

The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.

Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.

Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.

The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.