4 resultados para Leader
em Duke University
Resumo:
The Veterans Health Administration (VHA) in the Department of Veteran Affairs (VA) has emerged as a national and international leader in the delivery and research of telehealth-based treatment. Several unique characteristics of care in VA settings intersect to create an ideal environment for telehealth modalities and research. However, the value of telehealth experience and initiatives in VA settings is limited if telehealth strategies cannot be widely exported to other public or private systems. Whereas a hierarchical organization, such as VA, can innovate and fund change relatively quickly based on provider and patient preferences and a growing knowledge base, other health provider organizations and third-party payers may likely require replicable scientific findings over time before incremental investments will be made to create infrastructure, reform regulatory barriers, and amend laws to accommodate expansion of telehealth modalities. Accordingly, large-scale scientifically rigorous telehealth research in VHA settings is essential not only to investigate the efficacy of existing and future telehealth practices in VHA, but also to hasten the development of telehealth infrastructure in private and other public health settings. We propose an expanded partnership between the VA, NIH, and other funding agencies to investigate creative and pragmatic uses of telehealth technology. To this end, we identify six specific areas of research we believe to be particularly relevant to the efficient development of telehealth modalities in civilian and military contexts outside VHA.
Resumo:
This paper reports a new strategy, recursive directional ligation by plasmid reconstruction (PRe-RDL), to rapidly clone highly repetitive polypeptides of any sequence and specified length over a large range of molecular weights. In a single cycle of PRe-RDL, two halves of a parent plasmid, each containing a copy of an oligomer, are ligated together, thereby dimerizing the oligomer and reconstituting a functional plasmid. This process is carried out recursively to assemble an oligomeric gene with the desired number of repeats. PRe-RDL has several unique features that stem from the use of type IIs restriction endonucleases: first, PRe-RDL is a seamless cloning method that leaves no extraneous nucleotides at the ligation junction. Because it uses type IIs endonucleases to ligate the two halves of the plasmid, PRe-RDL also addresses the major limitation of RDL in that it abolishes any restriction on the gene sequence that can be oligomerized. The reconstitution of a functional plasmid only upon successful ligation in PRe-RDL also addresses two other limitations of RDL: the significant background from self-ligation of the vector observed in RDL, and the decreased efficiency of ligation due to nonproductive circularization of the insert. PRe-RDL can also be used to assemble genes that encode different sequences in a predetermined order to encode block copolymers or append leader and trailer peptide sequences to the oligomerized gene.
Resumo:
We report the observation with the North Alabama Lightning Mapping Array (LMA) related to a terrestrial gamma-ray flash (TGF) detected by RHESSI on 26 July 2008. The LMA data explicitly show the TGF was produced during the initial development of a compact intracloud (IC) lightning flash between a negative charge region centered at about 8.5 km above sea level (-22C temperature level) a higher positive region centered at 13 km, both confined to the convective core of an isolated storm in close proximity to the RHESSI footprint. After the occurrence of an LMA source with a high peak power (26 kW), the initial lightning evolution caused an unusually large IC current moment that became detectable 2 ms after the first LMA source and increased for another 2 ms, during which the burst of gamma-rays was produced. This slowly building current moment was most likely associated with the upward leader progression, which produced an uncommonly large IC charge moment change (+90 Ckm) in 3 ms while being punctuated by a sequence of fast discharge. These observations suggest that the leader development may be involved in the TGF production. Copyright © 2010 by the American Geophysical Union.
Resumo:
The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.