4 resultados para Later Life

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This qualitative study explored the rural to urban migration’s effect and its related factors on later life health status and health perception among Kazakh Chinese. The participants were same sex sibling pairs, of which one moved from rural to urban areas in early life and the other stayed in rural areas. Rural participants tend to have more selected chronic diseases conditions and other self-reported conditions than urban participants but less physical limitations in older age. There is no clear difference on the health perceptions between rural and urban participants. Health care access and environmental factors are the major differences that may affect health in later life for rural participants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Organophosphate (OP) pesticides are well-known developmental neurotoxicants that have been linked to abnormal cognitive and behavioral endpoints through both epidemiological studies and animal models of behavioral teratology, and are implicated in the dysfunction of multiple neurotransmitters, including dopamine. Chemical similarities between OP pesticides and organophosphate flame retardants (OPFRs), a class of compounds growing in use and environmental relevance, have produced concern regarding whether developmental exposures to OPFRs and OP pesticides may share behavioral outcomes, impacts on dopaminergic systems, or both. Methods: Using the zebrafish animal model, we exposed developing fish to two OPFRs, TDCIPP and TPHP, as well as the OP pesticide chlorpyrifos, during the first 5 days following fertilization. From there, the exposed fish were assayed for behavioral abnormalities and effects on monoamine neurochemistry as both larvae and adults. An experiment conducted in parallel examined how antagonism of the dopamine system during an identical window of development could alter later life behavior in the same assays. Finally, we investigated the interaction between developmental exposure to an OPFR and acute dopamine antagonism in larval behavior. Results: Developmental exposure to all three OP compounds altered zebrafish behavior, with effects persisting into adulthood. Additionally, exposure to an OPFR decreased the behavioral response to acute D2 receptor antagonism in larvae. However, the pattern of behavioral effects diverged substantially from those seen following developmental dopamine antagonism, and the investigations into dopamine neurochemistry were too variable to be conclusive. Thus, although the results support the hypothesis that OPFRs, as with OP pesticides such as chlorpyrifos, may present a risk to normal behavioral development, we were unable to directly link these effects to any dopaminergic dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A life-course perspective is committed to the proposition that from conception to death, all human outcomes are the result of a continual interaction between the indi- vidual and all of the environments that he or she inhabits at any given point in time. Early development is a critical period, a window of time during the life course when a given exposure can have a critical or permanent in uence on later outcomes. But the impact of exposures upon outcomes does not end at any speci c point in time, inasmuch as life is a continuing interactive and adaptive process. We now know that what applies to human beings also applies to their genomes. The “outcome” of any gene at any given point in time (whether or not it is used to transcribe a particular protein, what form of that protein, and how much) is a product of the interaction between the gene and the multiple environments of which it is a part, which include the epigenome, the cell, the biological human, and the assorted environments he or she occupies (e.g., geographical, socioeconomic, ethnic, etc.). Early life experiences can permanently “reprogram” the epigenome and gene transcription with life-long behavioral consequences. At the same time, the epigenome as well as the genome continue to be environmentally responsive throughout the life course.