6 resultados para Latent period
em Duke University
Resumo:
This article examines the behavior of equity trading volume and volatility for the individual firms composing the Standard & Poor's 100 composite index. Using multivariate spectral methods, we find that fractionally integrated processes best describe the long-run temporal dependencies in both series. Consistent with a stylized mixture-of-distributions hypothesis model in which the aggregate "news"-arrival process possesses long-memory characteristics, the long-run hyperbolic decay rates appear to be common across each volume-volatility pair.
Resumo:
We develop a model for stochastic processes with random marginal distributions. Our model relies on a stick-breaking construction for the marginal distribution of the process, and introduces dependence across locations by using a latent Gaussian copula model as the mechanism for selecting the atoms. The resulting latent stick-breaking process (LaSBP) induces a random partition of the index space, with points closer in space having a higher probability of being in the same cluster. We develop an efficient and straightforward Markov chain Monte Carlo (MCMC) algorithm for computation and discuss applications in financial econometrics and ecology. This article has supplementary material online.
Resumo:
Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of "trans"-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1alpha protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage.
Resumo:
We discuss a general approach to dynamic sparsity modeling in multivariate time series analysis. Time-varying parameters are linked to latent processes that are thresholded to induce zero values adaptively, providing natural mechanisms for dynamic variable inclusion/selection. We discuss Bayesian model specification, analysis and prediction in dynamic regressions, time-varying vector autoregressions, and multivariate volatility models using latent thresholding. Application to a topical macroeconomic time series problem illustrates some of the benefits of the approach in terms of statistical and economic interpretations as well as improved predictions. Supplementary materials for this article are available online. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Learning multiple tasks across heterogeneous domains is a challenging problem since the feature space may not be the same for different tasks. We assume the data in multiple tasks are generated from a latent common domain via sparse domain transforms and propose a latent probit model (LPM) to jointly learn the domain transforms, and the shared probit classifier in the common domain. To learn meaningful task relatedness and avoid over-fitting in classification, we introduce sparsity in the domain transforms matrices, as well as in the common classifier. We derive theoretical bounds for the estimation error of the classifier in terms of the sparsity of domain transforms. An expectation-maximization algorithm is derived for learning the LPM. The effectiveness of the approach is demonstrated on several real datasets.