2 resultados para Labor Shortage

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ritonavir inhibition of cytochrome P450 3A4 decreases the elimination clearance of fentanyl by 67%. We used a pharmacokinetic model developed from published data to simulate the effect of sample patient-controlled epidural labor analgesic regimens on plasma fentanyl concentrations in the absence and presence of ritonavir-induced cytochrome P450 3A4 inhibition. METHODS: Fentanyl absorption from the epidural space was modeled using tanks-in-series delay elements. Systemic fentanyl disposition was described using a three-compartment pharmacokinetic model. Parameters for epidural drug absorption were estimated by fitting the model to reported plasma fentanyl concentrations measured after epidural administration. The validity of the model was assessed by comparing predicted plasma concentrations after epidural administration to published data. The effect of ritonavir was modeled as a 67% decrease in fentanyl elimination clearance. Plasma fentanyl concentrations were simulated for six sample patient-controlled epidural labor analgesic regimens over 24 h using ritonavir and control models. Simulated data were analyzed to determine if plasma fentanyl concentrations producing a 50% decrease in minute ventilation (6.1 ng/mL) were achieved. RESULTS: Simulated plasma fentanyl concentrations in the ritonavir group were higher than those in the control group for all sample labor analgesic regimens. Maximum plasma fentanyl concentrations were 1.8 ng/mL and 3.4 ng/mL for the normal and ritonavir simulations, respectively, and did not reach concentrations associated with 50% decrease in minute ventilation. CONCLUSION: Our model predicts that even with maximal clinical dosing regimens of epidural fentanyl over 24 h, ritonavir-induced cytochrome P450 3A4 inhibition is unlikely to produce plasma fentanyl concentrations associated with a decrease in minute ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry.