3 resultados para LINEAR-RESPONSE

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Adenosine-induced transient flow arrest has been used to facilitate clip ligation of intracranial aneurysms. However, the starting dose that is most likely to produce an adequate duration of profound hypotension remains unclear. We reviewed our experience to determine the dose-response relationship and apparent perioperative safety profile of adenosine in intracranial aneurysm patients. METHODS: This case series describes 24 aneurysm clip ligation procedures performed under an anesthetic consisting of remifentanil, low-dose volatile anesthetic, and propofol in which adenosine was used. The report focuses on the doses administered; duration of systolic blood pressure <60 mm Hg (SBP(<60 mm Hg)); and any cardiovascular, neurologic, or pulmonary complications observed in the perioperative period. RESULTS: A median dose of 0.34 mg/kg ideal body weight (range: 0.29-0.44 mg/kg) resulted in a SBP(<60 mm Hg) for a median of 57 seconds (range: 26-105 seconds). There was a linear relationship between the log-transformed dose of adenosine and the duration of a SBP(<60 mm Hg) (R(2) = 0.38). Two patients developed transient, hemodynamically stable atrial fibrillation, 2 had postoperative troponin levels >0.03 ng/mL without any evidence of cardiac dysfunction, and 3 had postoperative neurologic changes. CONCLUSIONS: For intracranial aneurysms in which temporary occlusion is impractical or difficult, adenosine is capable of providing brief periods of profound systemic hypotension with low perioperative morbidity. On the basis of these data, a dose of 0.3 to 0.4 mg/kg ideal body weight may be the recommended starting dose to achieve approximately 45 seconds of profound systemic hypotension during a remifentanil/low-dose volatile anesthetic with propofol induced burst suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The full-scale base-isolated structure studied in this dissertation is the only base-isolated building in South Island of New Zealand. It sustained hundreds of earthquake ground motions from September 2010 and well into 2012. Several large earthquake responses were recorded in December 2011 by NEES@UCLA and by GeoNet recording station nearby Christchurch Women's Hospital. The primary focus of this dissertation is to advance the state-of-the art of the methods to evaluate performance of seismic-isolated structures and the effects of soil-structure interaction by developing new data processing methodologies to overcome current limitations and by implementing advanced numerical modeling in OpenSees for direct analysis of soil-structure interaction.

This dissertation presents a novel method for recovering force-displacement relations within the isolators of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics, real modes, and equal floor masses, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. The recovered in-service force-displacement relations are then incorporated into the OpenSees soil structure interaction model.

Numerical simulations of soil-structure interaction involving non-uniform soil behavior are conducted following the development of the complete soil-structure interaction model of Christchurch Women's Hospital in OpenSees. In these 2D OpenSees models, the superstructure is modeled as two-dimensional frames in short span and long span respectively. The lead rubber bearings are modeled as elastomeric bearing (Bouc Wen) elements. The soil underlying the concrete raft foundation is modeled with linear elastic plane strain quadrilateral element. The non-uniformity of the soil profile is incorporated by extraction and interpolation of shear wave velocity profile from the Canterbury Geotechnical Database. The validity of the complete two-dimensional soil-structure interaction OpenSees model for the hospital is checked by comparing the results of peak floor responses and force-displacement relations within the isolation system achieved from OpenSees simulations to the recorded measurements. General explanations and implications, supported by displacement drifts, floor acceleration and displacement responses, force-displacement relations are described to address the effects of soil-structure interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide biological insights into transcriptional regulation, a couple of groups have recently presented models relating the promoter DNA-bound transcription factors (TFs) to downstream gene’s mean transcript level or transcript production rates over time. However, transcript production is dynamic in response to changes of TF concentrations over time. Also, TFs are not the only factors binding to promoters; other DNA binding factors (DBFs) bind as well, especially nucleosomes, resulting in competition between DBFs for binding at same genomic location. Additionally, not only TFs, but also some other elements regulate transcription. Within core promoter, various regulatory elements influence RNAPII recruitment, PIC formation, RNAPII searching for TSS, and RNAPII initiating transcription. Moreover, it is proposed that downstream from TSS, nucleosomes resist RNAPII elongation.

Here, we provide a machine learning framework to predict transcript production rates from DNA sequences. We applied this framework in the S. cerevisiae yeast for two scenarios: a) to predict the dynamic transcript production rate during the cell cycle for native promoters; b) to predict the mean transcript production rate over time for synthetic promoters. As far as we know, our framework is the first successful attempt to have a model that can predict dynamic transcript production rates from DNA sequences only: with cell cycle data set, we got Pearson correlation coefficient Cp = 0.751 and coefficient of determination r2 = 0.564 on test set for predicting dynamic transcript production rate over time. Also, for DREAM6 Gene Promoter Expression Prediction challenge, our fitted model outperformed all participant teams, best of all teams, and a model combining best team’s k-mer based sequence features and another paper’s biologically mechanistic features, in terms of all scoring metrics.

Moreover, our framework shows its capability of identifying generalizable fea- tures by interpreting the highly predictive models, and thereby provide support for associated hypothesized mechanisms about transcriptional regulation. With the learned sparse linear models, we got results supporting the following biological insights: a) TFs govern the probability of RNAPII recruitment and initiation possibly through interactions with PIC components and transcription cofactors; b) the core promoter amplifies the transcript production probably by influencing PIC formation, RNAPII recruitment, DNA melting, RNAPII searching for and selecting TSS, releasing RNAPII from general transcription factors, and thereby initiation; c) there is strong transcriptional synergy between TFs and core promoter elements; d) the regulatory elements within core promoter region are more than TATA box and nucleosome free region, suggesting the existence of still unidentified TAF-dependent and cofactor-dependent core promoter elements in yeast S. cerevisiae; e) nucleosome occupancy is helpful for representing +1 and -1 nucleosomes’ regulatory roles on transcription.