2 resultados para Kingston (Mich.)

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 microg/kg) and radioactivity (226Ra + 228Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (< 10 microm) containing these toxics into the atmosphere that may pose a health risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments.